Skip to main content
Log in

Sawdust: Cost Effective Scavenger for the Removal of Chromium(III) Ions from Aqueous Solutions

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Cr(III) ions sorption onto sawdust of spruce (Picea smithiana) has been studied thoroughly using radiotracer technique. Maximum sorption (94%) of Cr(III) ions (8.98×10−5 M) onto sorbent surface is achieved from deionized water in 20 min agitation time using 200 mg of sawdust. The sorption data followed the Freundlich, Dubinin-Radushkevich (D-R) and Langmuir isotherms. Freundlich constants l/n = 0.86 ± 0.07 and Ce = 85.0 ± 25.8 mmole g−1 have been estimated. Sorption capacity, Xm = 0.82± 0.3 mmole g−1, β = −0.00356± 0.00017 kJ2 mole−2 and energy, E = 11.9± 0.3 kJ mole−1 have been evaluated using D-R isotherm. The Langmuir constants Q = 5.8± 0.2 μmole g−1 and b = (7.4± 0.5)×104 dm3 mole−1 have been calculated. The variation of sorption with temperature yields thermodynamic parameters Δ H = −11.6± 0.3 kJ mole−1, Δ S = −16.2± 0.9 J mole−1 K−1 and Δ G = −6.8± 0.3 kJ mole−1 at 298 K. The negative value of enthalpy and free energy reflect the exothermic and spontaneous nature of sorption respectively. Among the anions studied oxalate, citrate, carbonate and borate have reduced the sorption. The cations Y(III), Ce(II) and Ca(II) suppressed sorption. The sawdust column can be used to separate Cr(III) ion from Cs(I), I(I),Tc (VII) and Se (IV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baraniak, L., Bernhard, G. and Nitsche, H.: 2002, ‘Influence of hydrothermal wood degradation products on the uranium sorption onto metamorphic rocks and sediments’, J. Radioanal. Nucl. Chem. 253(2), 185–190.

    Article  CAS  Google Scholar 

  • Benes, P. and Majar, V.: 1980, Trace Chemistry of Aqueous Solutions, Elsevier Science, Amsterdam, 175 pp.

    Google Scholar 

  • Dubinin, M. M. and Radushkevich, L. V.: 1947, ‘The equation of the characteristic curve of activated charcoal’, Proc. Acad. Sci. USSR, Phys. Chem. Sect. 55, 327–329.

    Google Scholar 

  • Foldesova, M., Dillinger, P. and Lukae, P.: 2000, ‘Adsorption and desorption of Cr (III) on natural and chemically modified Slovak Zeolites’, J. Radioanal. Nucl. Chem. 245(2), 435–439.

    Article  CAS  Google Scholar 

  • Freundlich, H.: 1926, Colloid and Capillary Chemistry, Methuen, London, p. 397.

    Google Scholar 

  • Hasany, S. M. and Ahmad, R.: 2002, ‘Fixation of micro or submicro amounts of Hg(II) ions onto sawdust from aqueous solutions’, Main Group Met. Chem. 25(12), 719–726.

    CAS  Google Scholar 

  • Hasany, S. M. and Ahmad, R.: 2003, ‘Sorption profile of Cd(II) ions onto coconut husk’, Main Group Met. Chem. 26(2), 87–98.

    CAS  Google Scholar 

  • Hasany, S. M., Ahmad, R. and Chaudhary, M. H.: 2003, ‘Investigation of sorption of Hg(II) ions onto coconut husk from aqueous solution using radiotracer technique’, Radiochim. Acta 91, 533–538.

    CAS  Google Scholar 

  • Hasany, S. M. and Chaudhary, M. H.: 1998, ‘Fixation of Cr(III) traces onto Haro river sand from acidic solution’, J. Radioanal. Nucl. Chem. 230(1–2), 11–15.

    CAS  Google Scholar 

  • Hobson, J. P.: 1969, ‘Physical adsorption isotherms extending from ultrahigh vacuum to vapor pressure’, J. Phys. Chem. 73, 2720–2727.

    CAS  Google Scholar 

  • James, B. R., Peutra, J. C. and Vitale, R. J.: 1997, ‘Oxidation-reduction chemistry of chromium: Relevance to the regulation and remediation of Chromate-contaminated soils’, J. Soil. Contam. 6(6), 569–580.

    CAS  Google Scholar 

  • Khalid, N., Rahman, A., Ahmad, S., Toheed, A. and Ahmed, J.: 1999, ‘Adsorption behavior of rice husk for the decontamination of chromium from industrial effluents’, J. Radioanal. Nucl. Chem. 240(3), 775–781.

    CAS  Google Scholar 

  • Lagergren, S.: 1889, ‘Theorie der sogennanten adsorption geloster stoffe’, K. Seveska Vetenskaped Handle. 24, 1–39.

    Google Scholar 

  • Langmuir, I.: 1918, ‘The adsorption of gases on plane surface of glass, mica and platinum’, J. Am. Chem. Soc. 80, 1361–1403.

    Google Scholar 

  • Lee, K. S., Lee, C. K. and Ng, A. Y.: 1998, ‘Column study on the sorption of Cr(VI) using quaternized rice hulls’, Bioresour. Technol. 68(2), 205–208.

    Google Scholar 

  • Low, K. S., Lee, C. K. and Lee, P. L.: 1997, ‘Chromium(III) sorption enhancement through NTA-Modification of biological materials’, Bull. Environ. Contam. Toxicol. 58, 380–386.

    CAS  PubMed  Google Scholar 

  • Mishra, S. P., Tiwari, D. and Dubey, R. S.: 1997, ‘The uptake behaviour of rice (Jaya) husks in the removal of Zn(II) ions – A radiotracer study’, Appl. Radiat. Isot. 48(7), 877–882.

    CAS  PubMed  Google Scholar 

  • Morris, W. J. and Weber, J. C.: 1963, ‘Kinetics of adsorption on carbon from solution’, J. Saint, Eng. Div., ASCE 89(SA2), 31–59.

    Google Scholar 

  • Pandy, K. K., Prasad, G. and Singh, V. N.: 1984, ‘Removal of Cr (IV) from aqueous solutions by adsorption on fly ash-wallastonite’, J. Chem. Tech. Biotechnol. 34A, 367–374.

    Google Scholar 

  • Plunkett, E. R.: 1987, Handbook of Industrial Toxicology, Edward Arnold Publishers, London, pp. 138–140.

    Google Scholar 

  • Reichenberg, D.: 1953, ‘Properties of ion exchange resins in relation to their structure. III. Kinetics of exchange’, J. Am. Chem. Soc. 75, 589–597.

    CAS  Google Scholar 

  • Voropanova, L. A., Getova, E. Y., Rubanovskaya, S. G. and Pastukhov, A. V.: 1998, ‘Use of seeds of leguminous crops for sorption of chromium (VI), molybdenum (VI) and tungston (VI)’, Khim Prom-St. 9, 555–559.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, R. Sawdust: Cost Effective Scavenger for the Removal of Chromium(III) Ions from Aqueous Solutions. Water Air Soil Pollut 163, 169–183 (2005). https://doi.org/10.1007/s11270-005-0217-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-005-0217-x

Keywords

Navigation