Skip to main content

Advertisement

Log in

Development of a Protocol for the Karst Water Source Protection Zoning: Application to the Classical Karst Region (NE Italy and SW Slovenia)

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Although karst aquifers are highly vulnerable and represent an important water resource, they are often inadequately protected. Furthermore, national water resource protection policies lack precision regarding the criteria for delimitation of source protection zones in karst. Usually either vulnerability assessment or travel time is considered. The proposed integrated protocol considers both. It is specifically designed for large karst aquifers where i) an additional distinction between areas of different liability to contamination within the aquifer, and ii) a certain generalisation of protection classes should be made for practical reasons. The protocol includes a detailed description of the separate steps of the protection zoning procedure. Information obtained from both artificial and natural tracers is used to account for the variability of groundwater flow under different hydrologic conditions. Analysis of groundwater physico-chemical parameters time series is better employed under high flow regimes and analysis of artificial tracers breakthrough curves under low flow conditions. Source protection zones are divided into three levels of protection, which should be further generalised, validated and adjusted to land use plans. The protocol has been applied to the Classical Karst Region transboundary aquifer (NE Italy and SW Slovenia). The results enable a uniform delineation of protection zones encompassing water sources that have not been protected to date, and improve the understanding and management of transboundary aquifers. The proposed protocol can be used in other karst aquifers, and adjusted to national protection legislation and spatial planning frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13(1):148–160. https://doi.org/10.1007/s10040-004-0402-9

    Article  Google Scholar 

  • Bisaglia M, Cisotto A, Stocco R, Guarino M, Biolchi S, Boccali C, Cleva S, Cucchi F, Treu F, Zavagno E, Zini L, Gregorič A, Prebil T, Stopar M, Žabar R, Čenčur-Curk B (2014) La salvaguardia degli acquiferi LINEE GUIDA/Smernice za zaščito vodonosnikov. Autorità di Bacino Alto Adriatico, Venezia

  • Civita M, Cucchi F, Garavoglia S, Maranzana F, Vigna B (1995) The Timavo hydrogeologic system: an important reservoir of supplementary water resources to be reclaimed and protected. Acta Carsologica 24:169–186

    Google Scholar 

  • Cucchi F, Piano C (2013) Carta geologica del Carso Classico. Direzione centrale ambiente energia e politiche per la montagna. Regione Autonoma Friuli Venezia Giulia, Trieste

  • Cucchi F, Zini L, Calligaris C (eds) (2015) Le acque del Carso Classico / Vodonosnik klasičnega Krasa. Progetto/Projekt HYDROKARST. Edizioni Università di Trieste, Trieste

  • DELG/EPA/GSI (1999) Groundwater Protection Schemes. Department of Environment, Local Government, Environmental Protection Agency and Geological Survey of Ireland, Dublin

  • Dörfliger N, Zwahlen F (1998) Practical Guide. Groundwater Vulnerability Mapping in Karstic Regions (EPIK). Swiss Agency for the Environment, Forests and Landscape, Bern

  • Dörfliger N, Fleury P, Ladouche B (2009) Inverse modeling approach to allogenic Karst system characterization. Ground Water 47(3):414–426. https://doi.org/10.1111/j.1745-6584.2008.00517.x

    Article  Google Scholar 

  • Escolero OA, Marin LE, Steinich B, Pacheco AJ, Cabrera SA, Alcocer J (2002) Development of a protection strategy of Karst limestone aquifers: the Merida Yucatan, Mexico case study. Water Resour Manag 16(5):351–367. https://doi.org/10.1023/A:1021967909293

    Article  Google Scholar 

  • Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester

    Book  Google Scholar 

  • Foster S, Hirata R, Andreo B (2013) The aquifer pollution vulnerability concept: aid or impediment in promoting groundwater protection? Hydrogeol J 21:1389–1392. https://doi.org/10.1007/s10040-013-1019-7

    Article  Google Scholar 

  • Gabrovšek F, Peric B (2006) Monitoring the flood pulses in the epiphreatic zone of Karst aquifers: the case of Reka River system, Karst plateau, SW Slovenia. Acta Carsologica 35(1):35–45

    Google Scholar 

  • Galli M (2012) I traccianti nelle ricerche sul Timavo. Edizioni Università di Trieste, Trieste

  • Gemiti F (1984) Nuova e originale prova di marcatura delle acque del Timavo. Annali del Gruppo Grotte dell’Associazione Trenta Ottobre 7:43–62

    Google Scholar 

  • Gemiti F (1998) Marcatura delle acque del Timavo a seguito di un versamento di idrocarburi nella valle della Recca e interpretazione dell’evento mediante l’utilizzo di dati meteorologici, idrologici, idrochimici. Annali del Gruppo Grotte dell’Associazione Trenta Ottobre 10:93–104

    Google Scholar 

  • Goldscheider N (2010) Delineation of spring protection zones. In: Kresic N, Stevanovic Z (eds) Groundwater hydrology of springs. Engineering, Theory, Management and Sustainability. Elsevier Butterworth-Heinemann, Burlington, pp 305–338. https://doi.org/10.1016/B978-1-85617-502-9.00008-6

    Chapter  Google Scholar 

  • Italian Republic (2006) Norms concerning the environment. Official Gazette of the Italian Republic, D.lgs. 152/2006

  • Iván V, Mádl-Szőnyi J (2017) State of the art of karst vulnerability assessment: overview, evaluation and outlook. Environ Earth Sci 76(3):112. https://doi.org/10.1007/s12665-017-6422-2

    Article  Google Scholar 

  • Jurkovšek B, Biolchi S, Furlani S, Kolar-Jurkovšek T, Zini L, Jež J, Tunis G, Bavec M, Cucchi F (2016) Geology of the classical Karst Region (SW Slovenia–NE Italy). J Maps. https://doi.org/10.1080/17445647.2016.1215941

  • Kogovšek J, Petrič M (2007) Direction and dynamics of flow and transport of contaminants from the landfill near Sežana (SW Slovenia). Acta Carsologica 36(3):413–424

    Google Scholar 

  • Luhmann AJ, Covington MD, Alexander SC, Chai SY, Schwartz BF, Groten JT, Alexander EC Jr (2012) Comparing conservative and nonconservative tracers in karst and using them to estimate flow path geometry. J Hydrol 448–449:201–211. https://doi.org/10.1016/j.jhydrol.2012.04.044

    Article  Google Scholar 

  • Marín AI, Andreo B, Mudarra M (2015) Vulnerability mapping and protection zoning of karst springs. Validation by multitracer tests. Sci Total Environ 532:435–446. https://doi.org/10.1016/j.scitotenv.2015.05.029

    Article  Google Scholar 

  • Marín AI, Ravbar N, Kovačič G, Andreo B, Petrič M (2014) Application of methods for resource and source vulnerability mapping in the Orehek Karst aquifer, SW Slovenia. In: Mudry J, Zwahlen F, Bertrand C, LaMoreaux JW (eds) H2Karst research in limestone hydrogeology. Springer International Publishing, Switzerland, pp 139–150. https://doi.org/10.1007/978-3-319-06139-9_10

    Google Scholar 

  • Martin JB, Dean RW (1999) Temperature as a natural tracer of short residence times for groundwater in Karst aquifers. In: Palmer AN, Palmer MV, Sasowsky ID (eds) Karst modeling. Karst Waters Institute Special Publication 5, Charles Town, pp 236–242

    Google Scholar 

  • Michelutti G, Barbieri S, Bianco D, Zanolla S, Casagrande G (2006) Suoli e Paesaggi del Friuli Venezia Giulia 2. Provincia di Gorizia e Trieste. ERSA, Pozzuolo del Friuli

  • Mosetti F (1965) Nuova interpretazione di un esperimento di marcatura radioattiva del Timavo. Bolletino di Geofisica teorica et applicata 7(27):218–243

    Google Scholar 

  • Peric B (2012) Karst water course tracing between ponor and springs: the Reka river example, Kras/Carso, SW Slovenia-NE Italy. In: Šebela S, Peric B, Fabbricatore A, Cergna D (eds) International Congress on "Scientific Research in Show Caves", 13th to 15th September 2012, Postojna, pp 32–33

  • Perrin J, Luetscher M (2008) Inference of the structure of karst conduits using quantitative tracer tests and geological information: example of the Swiss Jura. Hydrogeol J 16(5):951–967. https://doi.org/10.1007/s10040-008-0281-6

    Article  Google Scholar 

  • Petrič M, Kogovšek J (2016) Identifying the characteristics of groundwater flow in the Classical Karst area (Slovenia/Italy) by means of tracer tests. Environ Earth Sci 75(22):1446. https://doi.org/10.1007/s12665-016-6255-4

    Article  Google Scholar 

  • Ravbar N (2013) Protection and management of Karst water sources catchments. In: Lannon EC (ed) Drainage basins and catchment management: classification, modelling, and environmental assessment (Water resource planning, development and management). Nova Science Publishers, New York, pp 143–168

    Google Scholar 

  • Ravbar N, Goldscheider N (2007) Proposed methodology of vulnerability and contamination risk mapping for the protection of karst aquifers in Slovenia. Acta Carsologica 36(3):461–475

    Article  Google Scholar 

  • Ravbar N, Goldscheider N (2009) Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment. Hydrogeol J 17:725–733. https://doi.org/10.1007/s10040-008-0368-0

    Article  Google Scholar 

  • Republic of Slovenia (2004) Rules on criteria for the designation of a water protection zone. Official Gazette of Republic of Slovenia, No. 64/2004

  • Screaton E, Martin JB, Ginn B, Smith L (2004) Conduit properties and karstification in the unconfined floridan aquifer. Ground Water 42(3):338–346. https://doi.org/10.1111/j.1745-6584.2004.tb02682.x

    Article  Google Scholar 

  • Šporar M, Rupreht J, Prus T, Vrščaj B, Vidic NJ, Zupan M, Knapič M, Lobnik F (1999) Pedološka karta Slovenije 1:25.000. Center za pedologijo in varstvo okolja, Biotehniška fakulteta, Lubljana

  • Stevanović Z (2015) Managing Karst aquifers—conceptualizations, solutions, impacts. In: Stevanović Z (ed) Karst aquifers—characterization and engineering. Springer International Publishing, Switzerland, pp 403–419. https://doi.org/10.1007/978-3-319-12850-4_14

    Google Scholar 

  • Urbanc J, Mezga K, Zini L (2012) An assessment of capacity of Brestovica – Klariči karst water supply (Slovenia). Acta Carsologica 41(1):89–100

    Google Scholar 

  • Vrba J, Zaporozec A (eds) (1994) Guidebook on mapping groundwater vulnerability; International contributions to hydrogeology, vol 16. Verlag Heinz Heise, Hannover

    Google Scholar 

  • Zini L, Calligaris C, Cucchi F (2015) The challenge of tunneling through mediterranean karst aquifers: the case study of Trieste (Italy): the planning of large-scale infrastructures in karst areas. Environ Earth Sci 74(1):281–295. https://doi.org/10.1007/s12665-015-4165-5

    Article  Google Scholar 

  • Zini L, Calligaris C, Treu F, Zavagno E, Iervolino D, Lippi F (2013) Groundwater sustainability in the Friuli Plain. AQUA Mundi 1:41–54

    Google Scholar 

  • Zini L, Calligaris C, Zavagno E (2014) Classical Karst hydrodynamics: a shared aquifer within Italy and Slovenia. In: Evolving water resources systems: understanding, predicting and managing water–society interactions. Proceedings of ICWRS2014, Bologna, IAHS Publ 364:499–504

  • Živanović V (2015) Delineation of Karst groundwater protection zones. In: Stevanović Z (ed) Karst aquifers—characterization and engineering. Springer International Publishing, Switzerland, pp 625–642

    Google Scholar 

  • Živanović V, Jemcov I, Dragišić V, Atanacković N, Magazinović S (2016) Karst groundwater source protection based on the time-dependent vulnerability assessment model: crnica springs case study, Eastern Serbia. Environ Earth Sci 75(17):1224. https://doi.org/10.1007/s12665-016-6018-2

    Article  Google Scholar 

Download references

Acknowledgments

This study was carried out within the HYDROKARST project financed by the European Regional Development Fund (Cross-border Cooperation Operational Programme Italy–Slovenia 2007–2013), the Ministry of Economy and Finance of the Italian Republic, the Government Office for Development and European Cohesion Policy of the Republic of Slovenia, and the P6―0119 Karst Research Programme of the Slovenian Research Agency.

S. Biolchi provided the merged vectorial geological map, F. Treu and S. Cleva the pre-treated land-use data. F. Treu supplied the merged DEM. C. Calligaris helped with the tracer test bibliography. J. Kogovšek contributed to the project results. The Agenzia regionale per lo sviluppo rurale (ERSA, Pozzuolo del Friuli) and the Center za pedologijo in varstvo okolja, Biotehniška fakulteta (Ljubljana) provided the vectorial soil maps. Thanks to the Geological Survey of the Regione Autonoma Friuli Venezia Giulia, AcegasApsAmga S.p.A. and Kraški vodovod Sežana d.o.o. for their long-standing collaboration.

Thanks to G. Crevatin, W. Boschin, E. Zavagno, B. Grillo, L. Visintini and G. Casagrande for the maintenance of the CTD monitoring network. Two anonymous reviewers helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Turpaud.

Ethics declarations

Conflict of Interest

None

Electronic supplementary material

Online resource 1

List and description of the main data required by the proposed protocol (XLSX 9 kb)

Online resource 2

List and description of the main data used in this study (XLSX 10 kb)

Online resource 3

O, C, P and K factor maps obtained using the Slovene Approach (Ravbar and Goldscheider 2007). The maps served as a basis for the source vulnerability assessment (GIF 212 kb)

High resolution image (TIFF 11825 kb)

Online resource 4

DEM map of the study area (after Cucchi et al. 2015) (GIF 307 kb)

High resolution image (TIFF 13043 kb)

Online resource 5

Land Use map of the study area (after Cucchi et al. 2015). Data from http://irdat.regione.fvg.it and http://rkg.gov.si/GERK/viewer.jsp (GIF 339 kb)

High resolution image (TIFF 13045 kb)

Online resource 6

Vegetation density map elaborated from Land Use map (Online resource 5) (GIF 345 kb)

High resolution image (TIFF 13373 kb)

Online resource 7

Name, coordinates (WGS84) and measurement period of rain gauge stations (XLSX 10 kb)

Online resource 8

Apparent flow velocities calculated by the time-lag determination of T and EC breakthrough curves. The corresponding daily discharges at Cerkvenikov Mlin are shown (XLS 39 kb)

Online resource 9

Apparent flow velocities obtained by tracer tests along the considered paths. The corresponding daily discharges at Cerkvenikov Mlin are shown (XLS 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turpaud, P., Zini, L., Ravbar, N. et al. Development of a Protocol for the Karst Water Source Protection Zoning: Application to the Classical Karst Region (NE Italy and SW Slovenia). Water Resour Manage 32, 1953–1968 (2018). https://doi.org/10.1007/s11269-017-1882-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-017-1882-4

Keywords

Navigation