Skip to main content
Log in

Estimation of Monthly Mean Reference Evapotranspiration in Turkey

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Monthly mean reference evapotranspiration (ET 0 ) is estimated using adaptive network based fuzzy inference system (ANFIS) and artificial neural network (ANN) models. Various combinations of long-term average monthly climatic data of wind speed, air temperature, relative humidity, and solar radiation, recorded at stations in Turkey, are used as inputs to the ANFIS and ANN models so as to calculate ET 0 given by the FAO-56 PM (Penman-Monteith) equation. First, a comparison is made among the estimates provided by the ANFIS and ANN models and those by the empirical methods of Hargreaves and Ritchie. Next, the empirical models are calibrated using the ET 0 values given by FAO-56 PM, and the estimates by the ANFIS and ANN techniques are compared with those of the calibrated models. Mean square error, mean absolute error, and determination coefficient statistics are used as comparison criteria for evaluation of performances of all the models considered. Based on these evaluations, it is found that the ANFIS and ANN schemes can be employed successfully in modeling the monthly mean ET 0 , because both approaches yield better estimates than the classical methods, and yet ANFIS being slightly more successful than ANN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen RG, Smith M, Perrier A, Pereira LS (1994) An update for the calculation of reference evapotranspiration. ICID Bull 43(2):35–92

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration guidelines for computing crop water requirements, FAO irrigation and drainage, paper no. 56. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000) Artificial neural networks in hydrology II: hydrologic applications. J Hydrol Eng ASCE 5(2):124–137

    Article  Google Scholar 

  • Cobaner M (2011) Evapotranspiration estimation by two different neuro-fuzzy inference systems. J Hydrol 398(3–4):292–302

    Article  Google Scholar 

  • Cobaner M (2013) Reference evapotranspiration based on Class A pan evaporation via wavelet regression technique. Irrig Sci 31:119–134

    Article  Google Scholar 

  • Cox E (1999) The fuzzy systems handbook, 2nd edn. Academic, California

    Google Scholar 

  • Dai X, Shi H, Li Y, Ouyang Z, Huo Z (2009) Artificial neural network models for estimating regional reference evapotranspiration based on climate factors. Hydrol Process 23:442–450

    Article  Google Scholar 

  • Dogan E (2009) Reference evapotranspiration estimation using adaptive neuro-fuzzy inference systems. Irrig Drain 58:617–628

    Article  Google Scholar 

  • Doorenbos J, Pruitt WO (1977) Crop water requirements. FAO ırrigation and drainage paper 24. FAO, Rome

    Google Scholar 

  • Ghare AD, Porey PD, Ingle RN (2006) Discussion of ‘Simplified estimation of reference evapotranspiration from pan evaporation data in California’ by Snyder, R. L., Orang, M., Matyac S., and Grismer, M. E. J Irrig Drain Eng 132(5):519–520

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99

    Article  Google Scholar 

  • Haykin S (1998) Neural networks—a comprehensive foundation, 2nd edn. Prentice-Hall, Upper Saddle River, pp 26–32

    Google Scholar 

  • Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. ASCE manuals and reports on engineering practices no. 70. ASCE, New York

    Google Scholar 

  • Jensen DT, Hargreaves GH, Temesgen B, Allen RG (1997) Computation of ET0 under nonideal conditions. J Irrig Drain Eng 123(5):394–400

    Article  Google Scholar 

  • Jones JW, Ritchie JT (1990) In: Hoffman GJ, Howel TA, Solomon KH (eds) ASAE monograph no.9. ASAE, St. Joseph, pp 63–89

    Google Scholar 

  • Karunanithi N, Grenney WJ, Whitley D, Bovee K (1994) Neural networks for river flow prediction. J Comp Civ Eng ASCE 8(2):201–220

    Article  Google Scholar 

  • Kisi O (2006a) Evapotranspiration estimation using feed-forward neural networks. Nord Hydrol 37(3):247–260

    Article  Google Scholar 

  • Kisi O (2006b) Generalized regression neural networks for evapotranspiration modeling. Hydrol Sci J 51(6):1092–1105

    Article  Google Scholar 

  • Kisi O (2007) Evapotranspiration modelling from climatic data using a neural computing technique. Hydrol Process 21:1925–1934

    Article  Google Scholar 

  • Kisi O, Ozturk O (2007) Adaptive neurofuzzy computing technique for evapotranspiration estimation. J Irrig Drain Eng ASCE 133(4):368–379

    Article  Google Scholar 

  • Kumar M, Raghuwanshi NS, Singh R, Wallender WW, Pruitt WO (2002) Estimating evapotranspiration using artificial neural network, ASCE. J Irrig Drain Eng 128(4):224–233

    Article  Google Scholar 

  • Kumar M, Raghuwanshi NS, Singh R (2011) Artificial neural networks approach in evapotranspiration modeling: a review. Irrig Sci 29(1):11–25

    Article  Google Scholar 

  • McCuen RH (2004) Hydrologic analysis and design, 3rd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Rahimikhoob A (2008) Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment. Irrig Sci 26(3):253–259

    Article  Google Scholar 

  • Rahimikhoob A (2010) Estimation of evapotranspiration based on only air temperature data using artificial neural Networks for a subtropical climate in Iran. Theor Appl Climatol 101(1–2):83–91

    Article  Google Scholar 

  • Ross TJ (1995) Fuzzy logic with engineering applications. McGraw Hill Co., New York

    Google Scholar 

  • Sayed T, Tavakolie A, Razavi A (2003) Comparison of adaptive network based fuzzy inference systems and b-spline neuro-fuzzy mode choice models. J Comput Civ Eng ASCE 17(2):123–130

    Article  Google Scholar 

  • Snyder R, Pruitt W (1985) Estimating reference evapotranspiration with hourly data. Chpt. VII. In: R. Snyder et al. (ed.) California irrigation management information system final report. Univ. of California-Davis. Land, air and water resources paper #10013

  • Snyder RL, Orang M, Matyac S, Grismer ME (2005) Simplified estimation of reference evapotranspiration from pan evaporation data in California. J Irrig Drain Eng 131(3):249–253

    Article  Google Scholar 

  • Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. ASCE J Irrig Draın Eng 129(3):214–218

    Article  Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its application to modeling and control. IEEE Trans Syst Man Cybern 15(1):116–132

    Article  Google Scholar 

  • Tokar AS, Johnson PA (1999) Rainfall-runoff modeling using artificial neural networks. J Hydrologic Eng 4(3):232–239

    Article  Google Scholar 

  • Trajkovic S, Kolakovic S (2009) Estimating reference evapotranspiration using limited weather data. J Irrig Drain Eng 135(4):443–449

    Article  Google Scholar 

  • Trajkovic S, Todorovic B, Stankovic M (2003) Forecasting reference evapotranspiration by artificial neural networks. ASCE J Irrıg Draın Eng 129(6):454–457

    Article  Google Scholar 

  • Traore S, Guven A (2012) Regional-specific numerical models of evapotranspiration using gene-expression programming interface in Sahel. Water Resour Manag 26:4367–4380

    Article  Google Scholar 

  • Traore S, Guven A (2013) New algebraic formulations of evapotranspiration extracted from gene-expression programming in the tropical seasonally dry regions of West Africa. Irrig Sci 31:1–10

    Article  Google Scholar 

  • TSMS (2012) Turkish state meteorological service, http://www.mgm.gov.tr/veridegerlendirme/yillik-toplam-yagis-verileri.aspx

  • Zhai L, Feng Q, Li Q, Xu C (2009) Comparison and modification f equations for calculating evapotranspiration (ET) with data from Gansu Province, Northwest China. Irrig Drain. doi:10.1002/ird.502

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Turkish State Meteorological Service (TSMS) for the supply of long-term monthly mean climatic variables.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Cobaner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Citakoglu, H., Cobaner, M., Haktanir, T. et al. Estimation of Monthly Mean Reference Evapotranspiration in Turkey. Water Resour Manage 28, 99–113 (2014). https://doi.org/10.1007/s11269-013-0474-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-013-0474-1

Keywords

Navigation