Skip to main content

Advertisement

Log in

The Contribution of Conservation Practices in Reducing Runoff, Soil Loss, and Transport of Nutrients at the Watershed Level

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

The lack of land use planning and the absence of conservation practices in a watershed can contribute to increased runoff, soil loss, and nutrient transport, which compromise the environmental quality in a watershed, especially the water resources. The objective of this study was to assess the contribution of conservation practices in reducing runoff and soil and nutrient losses using the Soil and Water Assessment Tool (SWAT) in the São Bartolomeu Stream Watershed, which is a significant watershed in Brazil. The modeling allowed us to identify critical areas regarding sediment yield, runoff, and nutrient loss. After that, conservation practices aimed at reducing the impacts of such processes were simulated. We also identified the most sensitive model parameters to simulate changes in management practices. Simulation results showed an average annual runoff (R) of 35 mm, average annual sediment yield (SY) of 51 t ha-1 year-1, 3.6 t ha-1 year-1 of total nitrogen (TN), and 1.6 t ha-1 year-1 of total phosphorus (TP). When considering the adoption of conservation practices, results showed an increase in water infiltration in the watershed and reductions of 18 %, 66 %, 25 %, and 30 % for R, SY, TN, and TP, respectively. Interventions which prioritize adequate management practices can be highly efficient and avoid changes in consolidated land uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R (2007) Spatially-distributed modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol 333:413–430. doi:10.1016/j.jhydrol.2006.09.014

    Article  Google Scholar 

  • Adriolo MV, Santos I, Gibertoni RC, Camargo ASG (2008) Calibração do modelo SWAT para a produção e transporte de sedimentos. In: VI Simpósio Bras. Pequenas e Médias Centrais Hidrelétricas. Belo Horizonte – MG. CBDB, Rio de Janeiro. T24-A03. (English abstract)

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington DC

    Google Scholar 

  • Arabi M, Govindaraju RS, Hantush MM (2006) Cost-effective allocation of watershed management practices using a genetic algorithm. Water Resour Res 42:W10429. doi:10.1029/2006WR004931

    Article  Google Scholar 

  • Arnold JG, Allen PM (1993) A comprehensive surface–groundwater flow model. J Hydrol 142:47–69. doi:10.1016/0022-1694(93)90004-S

    Article  Google Scholar 

  • Arnold JG, Allen PM, Morgan DS (2001) Hydrological model for design and constructed wetlands. Wetlands 21(2):167–178. doi:10.1672/0277-5212(2001)021[0167:HMFDAC]2.0.CO;2

    Article  Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment. Part I: Model development. J Am Water Resour Assoc 34(1):73–89. doi:10.1111/j.1752-1688.1998.tb05961.x

    Article  Google Scholar 

  • Baltokoski V, Tavares MHF, Machado RE, Oliveira MP (2010) Calibração de modelo para a simulação de vazão e de fósforo total nas sub-bacias dos rios Conrado e Pinheiro – Pato Branco (PR). Rev Bras Ciênc Solo 34:253–261 (English abstract)

    Article  Google Scholar 

  • Blainski E, Silveira FA, Conceição G (2008) Utilização do modelo hidrológico SWAT (Soil and Water Assessement Tool) para estudos na microbacia hidrográfica do rio Araranguá/SC. Taller Internacional Red Riegos – CYTED. Florianópolis SC

  • Bracmort KS, Arabi M, Frankenberger JR, Engel BA, Arnold JG (2006) Modeling long-term water quality impact of structural BMPs. Trans ASABE 49(2):367–374

    Google Scholar 

  • Dalzell BJ, Gowda PH, Mulla DJ (2004) Modeling sediment and phosphorus losses in an agricultural watershed to meet TMDLs. J Am Water Resour Assoc 40(2):533–543

    Article  Google Scholar 

  • Debele B, Srinivasan R, Parlange JY (2008) Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins. Environ Model Assess 13(1):135–153. doi:10.1007/s10666-006-9075-1

    Article  Google Scholar 

  • Di Luzio M, Srinivasan R, Arnold JG (2002) Integration of watershed tools and SWAT model into BASINS. J Amer Water Resour Assoc 38(4):1127–1141

    Article  Google Scholar 

  • Doole GJ, Weetman E (2009) Tactical management of pasture fallows in Western Australian cropping systems. Agric Syst 102:24–32. doi:10.1016/j.agsy.2009.06.002

    Article  Google Scholar 

  • Emerson CH, Welty C, Traver RG (2005) Watershed-scale evaluation of a system of storm water detention basins. J Hydrol Eng 10(3):237–242

    Article  Google Scholar 

  • Gassman PW, Osei E, Saleh A, Rodecap J, Norvell S, Williams JR (2006) Alternative practices for sediment and nutrient loss control on livestock farms in northeast Iowa. Agric Ecosyst Environ 117:135–144

    Article  Google Scholar 

  • Gassman PW, Reyers MR, Green CH, Arnold JG (2007) The soil and water assessment tool: historical development, applications, and future research directions. Trans ASABE 50(4):1211–1250

    Google Scholar 

  • Harrell LJ, Ranjithan SR (2003) Detention pond design and land use planning for watershed management. J Water Resour Plan Manag 129(2):98–106

    Article  Google Scholar 

  • IBGE (1979) Cartas do Brasil SF.23-X-B-V-3 (Viçosa); SF.23-X-V-1(Teixeiras); SF.2-V-B-IV-2 (Porto Firme), Scale 1:50.000. Instituto Brasileiro de Geografia e Estatística, 1st edition. Available at: ftp://geoftp.ibge.gov.br/mapeamento_sistematico/topograficos/escala_50mil/vetor/. Accessed 11 February 2006

  • INMET (1990) Climatological Normals 61/90. Instituto Nacional de Metorologia, Brasília

    Google Scholar 

  • Kaini P, Artita K, Nicklow JW (2012) Optimizing structural best management practices using SWAT and genetic algorithm to improve water quality goals. Water Resour Manag. doi:10.1007/s11269-012-9989-0

  • Krysanova V, Müller-Wohlfeil D, Becker A (1998) Development and test of a spatially distributed hydrological / water quality model for mesoscale watersheds. Ecol Model 106:261–289

    Google Scholar 

  • Lelis TA, Calijuri ML (2010) Modelagem hidrossedimentologica de bacia hidrográfica na região sudeste do Brasil, utilizando o SWAT. Ambi-Agua Taubaté 5(2):158–174. doi:10.4136/ambi-agua.145 (English abstract)

    Article  Google Scholar 

  • Lenhart T, Eckhardt K, Fohrer N, Fred HG (2002) Comparison of two different approaches of sensitivity analysis. Phys Chem Earth 27(9–10):645–654

    Google Scholar 

  • Li Z, Shao Q, Xu Z, Cai X (2010) Analysis of parameter uncertainty in semi-distributed hydrological models using bootstrap method: a case study of SWAT model applied to Yingluoxia watershed in northwest China. J Hydrol 385:76–83. doi:10.1016/j.jhydrol.2010.01.025

    Article  Google Scholar 

  • Luo Y, Zhang M (2009) Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT. Environ Pollut. doi:10.1016/j.envpol.2009.06.024

  • Luo Y, Yang X (2007) A multimedia environmental model of chemical distribution: fate, transport, and uncertainty analysis. Chemosphere 66:1396–1407

    Article  Google Scholar 

  • Machado RE (2002) Runoff and sediment yield simulation in a microwatershed using modeling and GIS techniques. Dissertation, Universidade de São Paulo (in Portuguese)

  • Migliaccio KW, Chaubey I, Haggard BE (2007) Evaluation of landscape and instream modeling to predict watershed nutrient yields. Environ Model Softw 22(7):987–999. doi:10.1016/j.envsoft.2006.06.010

    Article  Google Scholar 

  • Minoti RT (2006) Abordagens qualitativa e quantitativa das micro-bacias hidrográficas e áreas alagáveis de um compartimento do médio Mogi-Superior/SP. Dissertation, Universidade Federal de São Carlos, São Carlos

  • Mishra A, Kar S, Singh VP (2007) Prioritizing structural management by quantifying the effect of land use and land cover on watershed runoff and sediment yield. Water Resour Manag 21(11):1899–1913. doi:10.1007/s11269-006-9136-x

    Article  Google Scholar 

  • Muleta MK, Nicklow JW (2001) Watershed management technique to control sediment yield in agriculturally dominated areas. Water Int 26(3):435–443

    Article  Google Scholar 

  • Muleta MK, Nicklow JW (2005) Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. J Hydrol 306(1–4):127–145. doi:10.1016/j.jhydrol.2004.09.005

    Article  Google Scholar 

  • Narasimhan B, Allen PM, Srinivasan R, Bednarz ST, Arnold JG, Dunbar JA (2007) Streambank erosion and best management practice simulation using SWAT. In: Proceedings of 4th conference on ‘Watershed management to meet water quality standards and TMDLs’, San Antonio, 10–14 March 2007. ASABE publication #701P0207

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2005) Soil and water assessment tool theoretical documentation, version 2005. Available at: http://swatmodel.tamu.edu/media/1292/swat2005theory.pdf. Accessed 1 November 2010

  • Neves FF (2005) Análise prospectiva das áreas de risco à erosão na Microbacia Hidrografica do Rio Bonito, Descalvado – SP, potencialmente poluidoras por dejeto de granjas. Dissertação, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos

  • Panagopoulos Y, Makropoulos C, Mimikou M (2011) Diffuse surface water pollution: driving factors for different geoclimatic regions. Water Resour Manag 25:3635–3660. doi:10.1007/s11269-011-9874-2

    Article  Google Scholar 

  • Pisinaras V, Petalas C, Gikas GD, Gemitzi A, Tsihrintzis VA (2010) Hydrological and water quality modeling in a medium-sized basin using the Soil and Water Assessment Tool (SWAT). Desalination 250:274–286. doi:10.1016/j.desal.2009.09.044

    Article  Google Scholar 

  • Rizzini CT (1963) Previous note about the phytogeographical division (floristic-phytosociological) in Brazil. Rev Bras Geog 25:3, in Portuguese

    Google Scholar 

  • Santhi C, Srinivasan R, Arnold JG, Williams JR (2006) A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas. Environ Model Softw 21(8):1141–1157

    Article  Google Scholar 

  • Schaefer CRG, Lima HN, Costa OV, Passos RR (1998) Soil survey, landscape and agricultural use of the São Bartolomeu stream in Viçosa-MG. UFV, Viçosa (in Portuguese)

    Google Scholar 

  • Schwab GO, Fangmeier DD, Elliot WJ (1995) Soil and water management systems. Wiley, New Jersey, pp 108–111

    Google Scholar 

  • Secchi S, Gassman PW, Jha M, Kurkalova L, Feng HH, Campbell T, Kling CL (2007) The cost of cleaner water: assessing agricultural pollution reduction at the watershed scale. J Soil Water Conserv 62(1):10–21

    Google Scholar 

  • Shi P, Chen C, Srinivasan R, Zhang X, Cai T, Fang X, Qu S, Chen X, Li Q (2011) Evaluating the SWAT model for hydrological modeling in the Xixian watershed and a comparison with the XAJ model. Water Resour Manag 25:2595–2612. doi:10.1007/s11269-011-9828-8

    Article  Google Scholar 

  • Srinivasan R (2008) Bosque river environmental infrastructure improvement plan: Phase I final report. TR-312, Texas Water Resources Institute. Texas A & M University, College Station

    Google Scholar 

  • Teixeira MCL, Coelho DJS (2001) Planning Workshop of Ribeirão São Bartolomeu. EMATER-MG, IEF (in Portuguese)

  • Thampi SG, Raneesh KY, Surya TV (2010) Influence of scale on SWAT model calibration for streamflow in a river basin in the humid tropics. Water Resour Manag 24:4567–4578. doi:10.1007/s11269-010-9676-y

    Article  Google Scholar 

  • Tolson BA, Shoemaker CA (2007) Cannonsville Reservoir Watershed SWAT2000 model development, calibration and validation. J Hydrol 337(1–2):68–86. doi:10.1016/j.jhydrol.2007.01.017

    Article  Google Scholar 

  • Tuppad P, Kannan N, Srinivasan R, Colleen G, Rossi CG, Jeffrey G, Arnold JG (2010) Simulation of agricultural management alternatives for watershed protection. Water Resour Manag 24:3115–3144. doi:10.1007/s11269-010-9598-8

    Article  Google Scholar 

  • Ullrich A, Volk M (2009) Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of alternative management practices on water quality and quantity. Agricult Water Manage 96(8):1207–1217. doi:10.1002/ird.618

    Article  Google Scholar 

  • Vache KB, Eilers JM, Santelmann MV (2002) Water quality modeling of alternative agricultural scenarios in the U.S. Corn Belt. J Am Water Resour Assoc 38(3):773–787

    Article  Google Scholar 

  • White KL, Chaubey I (2005) Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model. J Am Water Resour Assoc 41(5):1077–1089. doi:10.1111/j.1752-1688.2005.tb03786.x

    Article  Google Scholar 

  • Xie H, Nkonya E, Wielgosz B (2010) Evaluation of the SWAT Model in Hydrologic Modeling of a Large Watershed in Nigeria. Water Resour Manag (AfricaWRM). doi:10.2316/P.2010.686-055

  • Yang J, Reichert P, Abbaspour KC, Xia J, Yang H (2008) Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J Hydrol 358:1–23. doi:10.1016/j.jhydrol.2008.05.012

    Article  Google Scholar 

  • Yang Q, Meng FR, Zhao Z, Chow TL, Benoy G, Rees HW, Bourque CPA (2009) Assessing the impacts of flow diversion terraces on stream water and sediment yields at a watershed level using SWAT model. Agric Ecosyst Environ 132:23–31. doi:10.1016/j.agee.2009.02.012

    Article  Google Scholar 

  • Zhang X, Srinivasan R, Bosch D (2009) Calibration and uncertainty analysis of the SWAT model using Genetic Algorithms and Bayesian Model Averaging. J Hydrol 374(3–4):307–317. doi:10.1016/j.jhydrol.2009.06.023

    Article  Google Scholar 

  • Zhen X, Yu SC, Lin J (2004) Optimal location and sizing of stormwater basins at watershed scale. J Water Resour Plan Manag 130(4):339–347

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial assistance provided by the National Council for Scientific and Technological Development, CNPq, and the Research Support Foundation of Minas Gerais, FAPEMIG. Also, the authors thank Professor Rafael Bastos, from the Federal University of Viçosa, for providing the water quality database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Everton Oliveira Rocha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocha, E.O., Calijuri, M.L., Santiago, A.F. et al. The Contribution of Conservation Practices in Reducing Runoff, Soil Loss, and Transport of Nutrients at the Watershed Level. Water Resour Manage 26, 3831–3852 (2012). https://doi.org/10.1007/s11269-012-0106-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-012-0106-1

Keywords

Navigation