Skip to main content
Log in

Using the Multiactor-Approach in Glowa-Danube to Simulate Decisions for the Water Supply Sector Under Conditions of Global Climate Change

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Glowa-Danube (www.glowa-danube.de) is an interdisciplinary project that aims to develop integrated strategies and tools for water and land use management in the upper Danube catchment (Germany, Austria ∼77,000 km2). The project is one of five within the Glowa research program (www.glowa.org) dealing with Global Change effects on the water cycle in six meso-scale catchments (up to 100,000 km2) in Central Europe, West Africa and the Middle East. In the Glowa-Danube project, 16 natural science and socio-economic simulation models are integrated in the coupled simulation system Danubia. This article describes the underlying concept and implementation of WaterSupply, a multiactor-based model of the water supply sector with a focus on water resource utilization and distribution of individual water supply companies. Within Danubia, WaterSupply represents the link between water supply and demand, where the former is simulated by a groundwater and a surface water model and the latter by water consumption models of four different sectors (domestic, industrial, agricultural and tourism). WaterSupply interprets the quantitative state of water resources for defined spatial and temporal units according to sustainability requirements and assesses the state of resources in relation to present water supply schemes and the dynamics of user demand. WaterSupply then seeks both to optimize the resource use of supply companies and to identify critical regions for which further adaptation of the water supply scheme will become necessary under changing climatic conditions. In this article, a brief description of the Glowa-Danube project and the integrated simulation system Danubia is followed by a short presentation of the DeepActor framework, which provides a common conceptual and technical basis for the socio-economic simulation models of Glowa-Danube. The main body of the article is devoted to the concept, the implementation and simulation results of WaterSupply. Results from different scenario calculations demonstrate the capabilities and the potential fields of application of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvisi S, Franchini M, Marinelli A (2003) A stochastic model for representing drinking water demand at residential level. Water Resour Manag 17(3):197–222. doi:10.1023/A:1024100518186

    Article  Google Scholar 

  • Apfelbeck J, Huigen M, Krimly T (2007) The importance of spatial, temporal and social scales in Integrated modeling; simulating the effects of climatic change on district- and farm-level decision making in the Danube catchment area. 81st Annual Conference, April 2–4, 2007, Reading University, UK. http://purl.umn.edu/7984

  • Athanasiadis I, Mentes A, Mitkas P, Mylopoulos Y (2005) A hybrid agent-based model for estimating residential water demand. Simulation 81(3):175–187

    Article  Google Scholar 

  • Axtell R (2000) Why agents? On the varied motivations for agent computing in the social sciences. Technical report 17, Center on Social and Economics Dynamics—The Brookings Institution. http://www.brookings.edu/es/dynamics/papers/agents/agents.pdf (March 2009)

  • Barth M, Hennicker R, Kraus A, Ludwig M (2004) Danubia: an integrative simulation system for global research in the upper danube basin. Cybern Syst 35(7–8):639–666

    Article  Google Scholar 

  • Barthel R, Nickel D, Meleg A, Trifkovic A, Braun J (2005) Linking the physical and the socio-economic compartments of an integrated water and land use management model on a river basin scale using an object-oriented water supply model. Phys Chem Earth 30(6–7):389–397

    Google Scholar 

  • Barthel R, Janisch S, Schwarz N, Trifkovic A, Nickel D, Schulz C, Mauser W (2008a) An integrated modelling framework for simulating regional-scale actor responses to global change in the water domain. Environ Model Softw 23:1095–1121. doi:10.1016/j.envsoft.2008.02.004

    Article  Google Scholar 

  • Barthel R, Mauser W, Braun J (2008b) Integrated modelling of global change effects on the water cycle in the upper Danube catchment (Germany)—the groundwater management perspective. In: Carillo JJ, Ortega MA (eds) Groundwater flow understanding from local to regional scale. International association of hydrogeologists, selected papers on hydrogeology, vol 12. Taylor & Francis, New York, pp 47–72

    Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Technical paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, pp 210. http://www.ipcc.ch/pdf/technical-papers/climate-change-water-en.pdf

  • BAYSTMUGV (2003) Trockenperiode 2003—Auswirkungen auf das Grundwasser. Bayerisches Staatsministerium für Umwelt, Gesundheit und Verbraucherschutz

  • Berger T, Birner R, Diaz J, McCarthy N, Wittmer H (2007) Capturing the complexity of water uses and water users within a multi-agent framework. Water Resour Manag 21(1):129–148

    Article  Google Scholar 

  • BMBF (2008) GLOWA—global change and the hydrological cycle. German Ministry of Research and Education—BMBF, IHP-HWRP reports, vol 7, ISSN 1640-1180, p 69

  • Bouwer H (2002) Integrated water management for the 21st century: problems and solutions. J Irrig Drain Eng 128(4):193–202

    Article  Google Scholar 

  • Davidsson P (2002) Agent based social simulation: a computer science view. JASSS 5(no. 1). http://jasss.soc.surrey.ac.uk/5/1/7.html

  • Davis DN (2000) Agent-based decision support framework for water supply infrastructure rehabilitation and development. Int J Comput Environ Urban Syst 24:173–190

    Article  Google Scholar 

  • Dow K, O’Connor RE, Yarnal B, Carbone GJ, Jocoy CL (2007) Why worry? Community water system managers’ perceptions of climate vulnerability. Glob Environ Change 17:228–237

    Article  Google Scholar 

  • Ekinci Ö, Konak H (2009) An optimization strategy for water distribution networks. Water Resour Manag 23(1):169–185. doi:10.1007/s11269-008-9270-8. http://www.springerlink.com/content/ex27278317915252

    Article  Google Scholar 

  • Emmert M (1999) Die Wasserversorgung im deutschen Einzugsgebiet der Donau. Wasserwirtschaft 89(7–8):396–403

    Google Scholar 

  • Ernst A, Schulz C, Schwarz N, Janisch S (2005) Shallow and deep modeling of water use in a large, spatially explicit coupled simulation system. In: Representing social reality: approaches and results. Proc. 3rd conf. of the European social simulation association, ESSA 05

  • Ernst A, Schulz C, Schwarz N, Janisch S (2008) Modelling of water use decisions in a large, spatially explicit, coupled simulation system. In: Edmonds B, Hernández C, Troitzsch KG (eds) Social simulation: technologies, advances and new discoveries. Information Science Reference, Hershey, NY, pp 138–149

    Google Scholar 

  • Espinasse B, Franchesquin N (2005) Multiagent modeling and simulation of hydraulic management of the Camargue. Simulation 81(3):201–221

    Article  Google Scholar 

  • Feuillette S, Bousquet F, Le Goulven P (2003) SINUSE: a multi-agent model to negotiate water demand management on a free access water table. Environ Model Softw 18(5):413–427

    Article  Google Scholar 

  • Gaiser T, Araújo JC, Frischkorn H, Krol M (2003) Global change and regional impacts: water availability and vulnerability of ecosystems and society in semi-arid northeast of Brazil. Springer, Heidelberg

    Google Scholar 

  • Gaiser T, Printz A, Schwarz von Raumer HG, Götzinger J, Dukhovny VA, Barthel R, Sorokin A, Tuchin A, Kiourtsidis C, Ganoulis I, Stahr K (2007) Development of a regional model for integrated management of water resources at the basin scale. Phys Chem Earth 33:175–182. doi:10.1016/j.pce.2007.04.018

    Google Scholar 

  • Gilbert N, Troitzsch KG (2005) Simulation for the social scientist, 2nd edn. Open University Press, Philadelphia, PA

    Google Scholar 

  • GLOWA-Danube (Hrsg.) (2008) Global Change Atlas Einzugsgebiet Obere Donau. Ludwigs-Maximilians-Universität, München

    Google Scholar 

  • GWP—Global Water Partnership (2000) Integrated water resources management. GWP Technical Advisory Committee. TAC Background Papers No.4. GWP, Stockholm, Sweden, pp 67

  • Haakh F (2007) Klimawandel und Wasserversorgung—Auswirkungen auf das Wasserdargebot, die Wasserqualität und die Versorgungssicherheit; Stuttgarter Berichte zur Siedlungswasserwirtschaft; 192; 22. Trinkwasserkolloquium am 14. Februar 2008. Leitung: Ulrich Rott; München: Oldenbourg Industrieverl. 2008

  • Hajkowicz S, Kerry C (2007) Review of multiple criteria analysis for water resource planning and management. Water Resour Manag 21(9):1553–1566. doi:10.1007/s11269-006-9112-5. http://www.springerlink.com/content/k2704gh565550mk5

    Article  Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U.S. geological survey modular ground-water model—user guide to modularization concepts and the ground-water flow process. US Geological Survey, Open-File Report 00-92

  • Hennicker R, Ludwig M (2005) Property-driven development of a coordination model for distributed simulations. In: Formal methods for open object-based distributed systems, 7th IFIP WG 6.1 International Conference, FMOODS 2005, Athens, Greece, Lecture Notes in Computer Science, vol 3535, pp 290–305

  • Hennicker R, Ludwig M (2006) Design and implementation of a coordination model for distributed simulations. In: Mayr CH, Breu R (eds) Proceedings modellierung 2006 (MOD’06). Lect. notes informatics, vol P-82. Gesellschaft für Informatik, Bonn, pp 83–97

  • Jobson HE (1989) Users manual for an open-channel stream flow model based on the dif-fusion analogy: U.S. Geological Survey Water-Resources Investigations 89-4133. USGS, Reston, VA, p 73

  • Kirshen P, Raskin P, Hansen E (1995) WEAP: a tool for sustainable water resources planning in the border region. In: Domenica M (ed) Integrated water resources planning for the 21st century. Proceedings of the 22nd annual conference of ASCE. American Society of Civil Engineers, Cambridge, MA, pp 7–11

    Google Scholar 

  • Koch H, Grünewald U (2008) A comparison of modelling systems for the development and revision of water resources management plans. Water Resour Manag 23:1403–1422. doi:10.1007/s11269-008-9333-x. http://www.springerlink.com/content/q1071102085h1746

    Article  Google Scholar 

  • Krysanova V, Hattermann F, Wechsung F (2007) Implications of complexity and uncertainty for integrated modelling and impact assessment in river basins. Environ Model Softw 22(5):701–709

    Article  Google Scholar 

  • López-Paredes A, Sauri D, Galán J (2005) Urban water management with artificial societies of agents: the FIRMABAR simulator. Simulation 81(3):189–199

    Article  Google Scholar 

  • Ludwig R, Mauser W, Niemeyer S, Colgan A, Stolz R, Escher-Vetter H, Kuhn M, Reichstein M, Tenhunen J, Kraus A, Ludwig M, Barth M, Hennicker R (2003) Web-based modelling of energy, water and matter fluxes to support decision making in mesoscale catchments—the integrative perspective of Glowa-Danube. Phys Chem Earth 28:621–634

    Google Scholar 

  • Macy MW, Willer R (2002) From factors to actors: computational sociology and agent-based modeling. Ann Rev Sociol 28:143–166

    Article  Google Scholar 

  • Maia R, Silva C (2009) DSS application at a river basin scale, taking into account water resources exploitation risks and associated costs: the Algarve Region. Desalination 237(1–3):81–91. doi:10.1016/j.desal.2007.12.024

    Article  Google Scholar 

  • Mauser W, Strasser U (2005) Statusreport Glowa-Danube integrative techniques, scenarios and strategies regarding global change of the water cycle. Project duration: 01.03.2004-28.02.2007. Report period: 01.03.2004–28.02.2005. http://www.Glowa-danube.de/PDF/reports/statusreport_phase2.pdf

  • Mauser W, Prasch M, Strasser U (2007) Physically based modelling of climate change impact on snow cover dynamics in Alpine Regions using a stochastic weather generator. http://www.mssanz.org.au/modsim07/papers/39_s55/Phisycallybased_s55_Mauser_.pdf

  • Moss S, Downing T, Rouchier J (2000) Demonstrating the role of stakeholder participation: an agent based social simulation model of water demand policy and response. http://cfpm.org/~scott/water-demand/demand-pilot1.pdf

  • Nickel D, Barthel R, Schmid C, Braun J (2005) Large-scale water resources management within the framework of Glowa-Danube—the water supply model. Phys Chem Earth 30(6–7):383–388

    Google Scholar 

  • Quinn PF, Hewett CJM, Doyle A (2004) Integrated water management: a multi-scale framework for decision support. In: Improving the balance between economic agricultural production and environmental quality through enhanced decision making. OECD, Paris

    Google Scholar 

  • Rodgers C, van de Giesen N, Laube W, Vlek PLG, Youkhana E (2007) The GLOWA Volta project: a framework for water resources decision-making and scientific capacity building in a transnational West African Basin. Water Resour Manag 21:295–313

    Article  Google Scholar 

  • Rumbaugh J, Jacobson I, Booch G (2005) The unified modeling language reference manual, 2nd edn. Pearson Education, Upper Saddle River, NJ

    Google Scholar 

  • Russell S, Norvig P (2003) Artificial intelligence: a modern approach, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • San Antonio Water System (2009) San Antonio Water System: stage 1 drought restrictions. http://www.saws.org/conservation/aquifermgmt/stage1.shtml (last visited Feb 2009)

  • Sax M, Schmude J, Dingeldey A (2007) Water and tourism simulating the tourist water use in the Upper Danube catchment area. In: Reducing the vulnerability of societies to water related risks at the basin scale. Proceedings of the third international symposium on integrated water resources management, Bochum, Germany, September 2006. IAHS Publ. 317, pp 66–71

  • Schwarz N, Ernst A (2009) Agent-based modeling of the diffusion of environmental innovations—an empirical approach. Technol Forecast Soc Change 76:497–511

    Article  Google Scholar 

  • Scoccimarro M, Walkera A, Dietricha C, Schreidera S, Jakeman T, Rossb H (1999) A framework for integrated catchment assessment in northern Thailand. Environ Model Softw 14(6):567–577

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Climate change 2007: the physical science basis. In: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Thoyer S, Morardet S, Rio P, Simon L, Goodhue R, Rausser G (2001) A bargaining model to simulate negotiations between water users. JASSS 4 (2). http://jasss.soc.surrey.ac.uk/4/2/6.html

  • Tillmann D, Larsen TA, Pahl-Wostl C, Gujer W (1999) Modeling the actors in water supply systems. Water Sci Technol 39(4):203–211

    Article  Google Scholar 

  • Timmermans J (2009) Interactive actor analysis for rural water management in The Netherlands: an application of the transactional approach. Water Resour Manag 23:1211–1236

    Article  Google Scholar 

  • UNESCO (1987) Methodological guidelines for the integrated environmental evaluation of water resources development. United Nations Environment Programme, Paris

  • van der Keur P, Henriksen HJ, Refsgaard JC, Brugnach M, Pahl-Wostl C, Dewulf A, Buiteveld H (2008) Identification of major sources of uncertainty in current IWRM Practice. Illustrated for the Rhine Basin. Water Resour Manag 22:1677–1708

    Article  Google Scholar 

  • Victorian Water Industry Ass. Inc. (2005) Victorian Uniform Drought Water Restriction. Guidelines (Final) http://www.vicwater.org.au/uploads/Water%20Restrictions/Final%20Version%20Uniform%20Drought%20Water%20Restriction%20Guidelines.pdf (last visited Feb 2009)

  • Volk M, Hirschfeld J, Schmidt G, Bohn C, Dehnhardt A, Liersch S, Lymburner L (2007) A SDSS-based ecological–economic modelling approach for integrated river basin management on different scale levels—the project FLUMAGIS. Water Resour Manag 21:12. doi:10.1007/s11269-007-9158-z

  • Watkins D, Kirby K, Punnett R (2004) Water for the everglades: application of the south Florida systems analysis model. J Water Resour Plan Manage 130(5):359–366

    Article  Google Scholar 

  • Weiss G (ed) (1999) Multiagent systems: a modern approach to distributed artificial intelligence. The MIT, Cambridge, MA

    Google Scholar 

  • Wu C (1995) Integrated water resources planning of quantity and quality in Taiwan. In: Domenica M (ed) Integrated water resources planning for the 21st century. Proceedings of the 22nd annual conference of the american society of civil engineers. American Society of Civil Engineers, Cambridge, MA, pp 65–68

    Google Scholar 

  • Xu C-Y, Singh VP (1998) A review on monthly water balance models for water resources investigations. Water Resour Manag 12(1):31–50. doi:10.1023/A:1007916816469. http://www.springerlink.com/content/p88215w6n3314q1l

    Google Scholar 

  • Yamout G, El-Fadel M (2005) An optimization approach for multi-sectoral water supply management in the greater Beirut area. Water Resour Manag 19:791–812

    Article  Google Scholar 

  • Zimmer M (2008) Assessing global change from a regional perspective: an economic close-up of climate change and migration. Dissertation, Volkswirtschaftliche Fakultät, München. http://edoc.ub.uni-muenchen.de/9139/2/Zimmer_Markus.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Barthel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barthel, R., Janisch, S., Nickel, D. et al. Using the Multiactor-Approach in Glowa-Danube to Simulate Decisions for the Water Supply Sector Under Conditions of Global Climate Change. Water Resour Manage 24, 239–275 (2010). https://doi.org/10.1007/s11269-009-9445-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-009-9445-y

Keywords

Navigation