Skip to main content
Log in

Modelling Sediment Input to Surface Waters for German States with MEPhos: Methodology, Sensitivity and Uncertainty

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Soil erosion on arable land and on steep vineyards is a major problem in the state of Hesse (21,115 km²) in central Germany. The aim of a joint study between the Research Centre Jülich, the Hessian Agency for the Environment and Geology and the Hessian Ministry for the Environment, Energy, Agriculture and Consumer Protection was to delineate parcels which are severely affected by erosion and to identify sediment source areas. For this purpose, the ABAG, an adaptation of the USLE approach to German conditions, has been employed with the best available data sets on K-, C-, R- and LS-factor. Model results at the field scale show that soil losses in Hesse vary between <0.5 and >15 tonnes/hectare/year. The mean loss amounts to ca. 4.3 tonnes/hectare/year. The sediment delivery ratios for 450 sub-catchments range between 0.5 and 78% with a mean of 18%. Further analysis showed that LS- and C-factor are of highest sensitivity for the model output. Therefore, the effects of alternative algorithms or sources for LS- and C-factor on the results were assessed. An uncertainty analysis based on Gaussian error propagation and Monte Carlo simulation showed that the uncertainty of model results induced by input parameters is 1.7 tonnes/hectare/year or 34% of the mean annual soil loss. The model results are a good basis for further works concerning a soil erosion atlas and internet-based soil data viewer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Auerswald K (1987) Sensitivität erosionsbestimmender Faktoren. Wasser Boden 39:34–38

    Google Scholar 

  • Auerswald K (2006) Germany. In: Boardman J, Poesen J (eds), Soil Erosion in Europe. 213–230

  • Beven K (2009) Environmental modelling: An uncertain future?. Abingdon and New York

  • Biesemans J, Van Meirvenne M, Gabriels D (2000) Extending the RUSLE with the Monte carlo error propagation technique to predict long-term average off-site sediment accumulation. J Soil Wat Cons 55(1):35–42

    Google Scholar 

  • Chatfield C (1995) Problem solving: a statistician’s guide. 2nd edn, Boca Raton

  • De Vente J, Poesen J (2005) Predicting soil erosion and sediment yield at the basin scale: scale issues and semi-quantitative models. Earth Sci Rev 71:95–125

    Article  Google Scholar 

  • Desmet PJJ, Govers G (1996) A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J Soil Wat Cons 51(5):427–433

    Google Scholar 

  • Deumlich D, Frielinghaus M (1994) Eintragspfade Bodenerosion und Oberflächenabfluß im Lockergesteinsbereich. In: Werner W, Wodsak H-P (Eds), Stickstoff- und Phosphoreintrag in Fließgewässer Deutschlands unter besonderer Berücksichtigung des Eintragsgeschehens im Lockergesteinsbereich der ehemaligen DDR. Agrarspectrum, 22, Frankfurt/M

  • Evans R (2002) An alternative way to assess water erosion of cultivated land—field-based measurements: and analysis of some results. Appl Geogr 22:187–208

    Article  Google Scholar 

  • Frede H-G, Dabbert S (1999) Handbuch zum Gewässerschutz in der Landwirtschaft. 2nd edn, Landsberg

  • Fried JS, Brown DG, Zweifler MO, Gold MA (2000) Mapping contributing areas for stormwater discharge to streams using terrain analysis. In: Wilson JP, Gallant JC (eds) Terrain analysis—principles and applications. New York, pp. 183–203

  • Gottwald W (2000) Statistik für Anwender. Wiley-VCH, Weinheim

    Google Scholar 

  • Guse B, Bronstert A, Rode M, Tetzlaff B, Wendland F (2007) Application of two phosphorus models with different complexities in a mesoscale river catchment. Adv Geosc 11:77–84

    Article  Google Scholar 

  • Hickey R (2000) Slope angle and slope length solution for GIS. Cartogr 29(1):1–8

    Google Scholar 

  • Jäger S, Gündra H, Schroeder M, Dikau R (1993) Bodenerosionsatlas Baden-Württemberg. Heidelberg

  • Kinnell PIA (2001) Slope length factor for applying the USLE-M to erosion in grid cells. Soil Till Res 58:11–17

    Article  Google Scholar 

  • Mc Cool DK, Brown LC, Foster GR, Mutchler CK, Meyer LD (1987) Revised slope steepness factor for the universal Soil loss equation. Trans ASAE 30(5):1387–1396

    Google Scholar 

  • Middleton MR (2003) Data analysis using microsoft excel. 3 rd edn

  • Mollenhauer K, Richtscheid P (2006) Hessen. In: Feldwisch N, Dankelmann E (eds), Bodenerosion durch Wasser—Bewertungsmethodik und Instrumente der deutschen Bundesländer. BVB-Materialien, 14:52–60

  • Mollenhauer K, Rathjen CL, Christiansen Th, Erpenbeck Ch (1990) Zur Erosivität der Niederschläge im Gebiet der deutschen Mittelgebirge, besonders im hessischen Raum. Schriftenr DVWK 86:79–162

    Google Scholar 

  • Moore ID, Burch GJ (1986) Physical basis of the length-slope factor in the universal soil loss equation. Soil Sci Soc Am J 50:1294–1298

    Article  Google Scholar 

  • Murphree CE, Mutchler CK (1981) Verification of the slope factor in the universal soil loss equation for low slopes. J Soil Wat Cons 36:300–302

    Google Scholar 

  • Nearing MA (1997) A single, continuous function for slope steepness influence on soil loss. SSSAJ 61:917–919

    Google Scholar 

  • Pandey A, Chowdary VM, Mal BC (2007) Identification of critical prone areas in the small agricultural watershed using USLE. GIS and remote sensing. Water Resour Manag 21:729–746

    Article  Google Scholar 

  • Renschler CS, Harbor J (2002) Soil erosion assessment tools from point to regional scales—the role of geomorphologists in land management research and implementation. Geomorphology 47:189–209

    Article  Google Scholar 

  • Richtscheid P (1996) Die Karte der potentiellen Erosionsgefährdung Hessens und deren Umsetzung in der Bodennutzungspraxis. In: Thüringer Landesanstalt für Umwelt (ed), Vorsorge vor Bodenabtrag und Sanierung von Bodenschäden—Umsetzung von Grundlagenerkenntnissen in die Praxis des Bodenschutzes. Tagungsband, 18/96 Schriftenreihe der Thüringer Landesanstalt für Umwelt: 31–36

  • Risse LM, Nearing MA, Laflen JM, Nicks AD (1993) Error assessment in the universal soil loss equation. SSSAJ 57:825–833

    Google Scholar 

  • Schmidt W, Seiffert S (2005) Sachsen. In: Feldwisch N, Dankelmann E (eds), Bodenerosion durch Wasser—Bewertungsmethodik und Instrumente der deutschen Bundesländer. BVB-Materialien, 14:102–115

  • Schwertmann U, Vogl W, Kainz M (1990) Bodenerosion durch Wasser—Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen. 2nd edn, Stuttgart

  • Tarboton DG (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour Res 33(2):309–319

    Article  Google Scholar 

  • Tetzlaff B (2006) Die Phosphatbelastung großer Flusseinzugsgebiete aus diffusen und punktuellen Quellen. Forschungszentr. Jülich, R. Umwelt/Environment 65

  • Tetzlaff B, Wendland F (2007) Modelling P-fluxes from diffuse and point sources in heterogeneous macroscale river basins using MEPhos. In: Förstner U, Westrich B (eds) Sediment dynamics and pollutant mobility in rivers. Series Environmental Science, Berlin

    Google Scholar 

  • Tetzlaff B, Kreins P, Kunkel R, Wendland F (2007) Area-differentiated modelling of P-fluxes in heterogeneous macroscale river basins. Water Sci Technol 55(3):123–131

    Article  Google Scholar 

  • Tetzlaff B, Kuhr P, Wendland F (2009a) A new method for creating maps of artificially drained areas in large river basins based on aerial photographs and geodata. Irrig Drain 58(5):569–585

    Article  Google Scholar 

  • Tetzlaff B, Kuhr P, Vereecken H, Wendland F (2009b) Aerial photograph-based delineation of artificially drained areas as a basis for water balance and phosphorus modelling in large river basins. Phys Chem Earth 34:552–564

    Article  Google Scholar 

  • Tetzlaff B, Vereecken H, Kunkel R, Wendland F (2009c) Modelling phosphorus inputs from agricultural sources and urban areas in river basins. Environ Geol 57:183–193

    Article  Google Scholar 

  • Wang G, Hapuarachchi P, Ishidaira H, Kiem AS, Takeuchi K (2009) Estimation of soil erosion and sediment yield during individual rainstorms at catchment scale. Water Resour Manag 23:1447–1465

    Article  Google Scholar 

  • Wischmeier WH (1976) Use and misuse of the universal soil loss equation. J Soil Wat Cons 31:5–9

    Google Scholar 

  • Wischmeier WH, Smith DD (1965) Predicting rainfall-erosion losses from cropland east of the Rocky-Mountains. Agriculture Handbook 282

  • Zehe E, Becker R, Bardossy A, Plate E (2005) Uncertainty of simulated catchment runoff response in the presence of threshold processes: role of initial soil moisture and precipitation. J Hydrol 315:183–202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Tetzlaff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tetzlaff, B., Wendland, F. Modelling Sediment Input to Surface Waters for German States with MEPhos: Methodology, Sensitivity and Uncertainty. Water Resour Manage 26, 165–184 (2012). https://doi.org/10.1007/s11269-011-9911-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-011-9911-1

Keywords

Navigation