Skip to main content
Log in

Journey of begomovirus betasatellite molecules: from satellites to indispensable partners

  • Review Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Betasatellites are a group of circular, single-stranded DNA molecules that are frequently found to be associated with monopartite begomoviruses of the family Geminiviridae. Betasatellites require their helper viruses for replication, movement, and encapsidation and they are often essential for induction of typical disease symptoms. The βC1 protein encoded by betasatellites is multifunctional that participates in diverse cellular events. It interferes with several cellular processes like normal development, chloroplasts, and innate immune system of plants. Recent research has indicated βC1 protein interaction with cellular proteins and its involvement in modulation of the host’s cell cycle and symptom determination. This article focuses on the functional mechanisms of βC1 and its interactions with other viral and host proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Varsani A, Navas-Castillo J, Moriones E, Hernández-Zepeda C, Idris A, Brown JK, Zerbini FM, Martin DP (2014) Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Arch Virol 159(8):2193–2203

    CAS  PubMed  Google Scholar 

  2. Varsani A, Roumagnac P, Fuchs M, Navas-Castillo J, Moriones E, Idris A, Briddon RW, Rivera-Bustamante R, Murilo Zerbini F, Martin DP (2017) Capulavirus and Grablovirus: two new genera in the family Geminiviridae. Arch Virol 162(6):1819–1831. https://doi.org/10.1007/s00705-017-3268-6

    Article  CAS  PubMed  Google Scholar 

  3. Brown JK (2012) Family geminiviridae. Virus taxonomy, classification and nomenclature of viruses: ninth report of the international committee on taxonomy of viruses, pp 351–373

  4. Melgarejo TA, Kon T, Rojas MR, Paz-Carrasco L, Zerbini FM, Gilbertson RL (2013) Characterization of a new world monopartite begomovirus causing leaf curl disease of tomato in Ecuador and Peru reveals a new direction in geminivirus evolution. J Virol 87(10):5397–5413. https://doi.org/10.1128/JVI.00234-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nawaz-ul-Rehman MS, Fauquet CM (2009) Evolution of geminiviruses and their satellites. FEBS Lett 583(12):1825–1832. https://doi.org/10.1016/j.febslet.2009.05.045

    Article  CAS  PubMed  Google Scholar 

  6. Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S (2013) Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 11(11):777–788. https://doi.org/10.1038/nrmicro3117

    Article  CAS  PubMed  Google Scholar 

  7. Mansoor S, Khan SH, Bashir A, Saeed M, Zafar Y, Malik KA, Briddon R, Stanley J, Markham PG (1999) Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. Virology 259(1):190–199. https://doi.org/10.1006/viro.1999.9766

    Article  CAS  PubMed  Google Scholar 

  8. Saunders K, Bedford ID, Briddon RW, Markham PG, Wong SM, Stanley J (2000) A unique virus complex causes Ageratum yellow vein disease. Proc Natl Acad Sci 97(12):6890–6895

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gnanasekaran P, KishoreKumar R, Bhattacharyya D, Vinoth Kumar R, Chakraborty S (2019) Multifaceted role of geminivirus associated betasatellite in pathogenesis. Mol Plant Pathol 20:1019–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cui X, Li G, Wang D, Hu D, Zhou X (2005) A begomovirus DNAβ-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J Virol 79(16):10764–10775

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Saunders K, Norman A, Gucciardo S, Stanley J (2004) The DNA β satellite component associated with ageratum yellow vein disease encodes an essential pathogenicity protein (βC1). Virology 324(1):37–47

    CAS  PubMed  Google Scholar 

  12. Yang X, Xie Y, Raja P, Li S, Wolf JN, Shen Q, Bisaro DM, Zhou X (2011) Suppression of methylation-mediated transcriptional gene silencing by βC1-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Pathog 7(10):e1002329. https://doi.org/10.1371/journal.ppat.1002329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Idris AM, Shahid MS, Briddon RW, Khan AJ, Zhu JK, Brown JK (2011) An unusual alphasatellite associated with monopartite begomoviruses attenuates symptoms and reduces betasatellite accumulation. J Gen Virol 92(Pt 3):706–717. https://doi.org/10.1099/vir.0.025288-0

    Article  CAS  PubMed  Google Scholar 

  14. Nawaz-ul-Rehman MS, Nahid N, Mansoor S, Briddon RW, Fauquet CM (2010) Post-transcriptional gene silencing suppressor activity of two non-pathogenic alphasatellites associated with a begomovirus. Virology 405(2):300–308. https://doi.org/10.1016/j.virol.2010.06.024

    Article  CAS  PubMed  Google Scholar 

  15. Fiallo-Olive E, Martinez-Zubiaur Y, Moriones E, Navas-Castillo J (2012) A novel class of DNA satellites associated with New World begomoviruses. Virology 426(1):1–6. https://doi.org/10.1016/j.virol.2012.01.024

    Article  CAS  PubMed  Google Scholar 

  16. Briddon RW, Stanley J (2006) Subviral agents associated with plant single-stranded DNA viruses. Virology 344(1):198–210

    CAS  PubMed  Google Scholar 

  17. Dry IB, Krake LR, Rigden JE, Rezaian MA (1997) A novel subviral agent associated with a geminivirus: the first report of a DNA satellite. Proc Natl Acad Sci 94(13):7088–7093

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Briddon RW, Mansoor S, Bedford ID, Pinner MS, Saunders K, Stanley J, Zafar Y, Malik KA, Markham PG (2001) Identification of DNA components required for induction of cotton leaf curl disease. Virology 285(2):234–243

    CAS  PubMed  Google Scholar 

  19. Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini M, Zhou X, Fauquet CM (2008) Recommendations for the classification and nomenclature of the DNA-beta satellites of begomoviruses. Arch Virol 153(4):763–781. https://doi.org/10.1007/s00705-007-0013-6

    Article  CAS  PubMed  Google Scholar 

  20. Briddon RW, Bull SE, Mansoor S, Amin I, Markham PG (2002) Universal primers for the PCR-mediated amplification of DNA β. Mol Biotechnol 20(3):315–318

    CAS  PubMed  Google Scholar 

  21. Guan C, Zhou X (2006) Phloem specific promoter from a satellite associated with a DNA virus. Virus Res 115(2):150–157

    CAS  PubMed  Google Scholar 

  22. Zhou X, Xie Y, Tao X, Zhang Z, Li Z, Fauquet CM (2003) Characterization of DNAβ associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. J Gen Virol 84(1):237–247

    CAS  PubMed  Google Scholar 

  23. Gopal P, Kumar PP, Sinilal B, Jose J, Yadunandam AK, Usha R (2007) Differential roles of C4 and βC1 in mediating suppression of post-transcriptional gene silencing: evidence for transactivation by the C2 of Bhendi yellow vein mosaic virus, a monopartite begomovirus. Virus Res 123(1):9–18

    CAS  PubMed  Google Scholar 

  24. Amin I, Hussain K, Akbergenov R, Yadav J, Qazi J, Mansoor S, Hohn T, Fauquet C, Briddon R (2011) Suppressors of RNA silencing encoded by the components of the cotton leaf curl begomovirus-betasatellite complex. Mol Plant Microbe Interact 24(8):973–983. https://doi.org/10.1094/mpmi-01-11-0001

    Article  CAS  PubMed  Google Scholar 

  25. Eini O (2017) A betasatellite-encoded protein regulates key components of gene silencing system in plants. Mol Biol 51(4):656–663. https://doi.org/10.7868/s002689841703003x

    Article  CAS  Google Scholar 

  26. Saunders K, Bedford ID, Yahara T, Stanley J (2003) Aetiology: the earliest recorded plant virus disease. Nature 422(6934):831

    CAS  PubMed  Google Scholar 

  27. Jose J, Usha R (2003) Bhendi yellow vein mosaic disease in India is caused by association of a DNA β satellite with a begomovirus. Virology 305(2):310–317

    CAS  PubMed  Google Scholar 

  28. Cui X, Tao X, Xie Y, Fauquet CM, Zhou X (2004) A DNAβ associated with Tomato yellow leaf curl China virus is required for symptom induction. J Virol 78(24):13966–13974

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Saeed M, Behjatnia SA, Mansoor S, Zafar Y, Hasnain S, Rezaian MA (2005) A single complementary-sense transcript of a geminiviral DNA β satellite is determinant of pathogenicity. Mol Plant Microbe Interact 18(1):7–14

    CAS  PubMed  Google Scholar 

  30. Qazi J, Amin I, Mansoor S, Iqbal MJ, Briddon RW (2007) Contribution of the satellite encoded gene βC1 to cotton leaf curl disease symptoms. Virus Res 128(1):135–139

    CAS  PubMed  Google Scholar 

  31. Ito T, Kimbara J, Sharma P, Ikegami M (2009) Interaction of tomato yellow leaf curl virus with diverse betasatellites enhances symptom severity. Arch Virol 154(8):1233–1239

    CAS  PubMed  Google Scholar 

  32. Kon T, Rojas MR, Abdourhamane IK, Gilbertson RL (2009) Roles and interactions of begomoviruses and satellite DNAs associated with okra leaf curl disease in Mali, West Africa. J Gen Virol 90(4):1001–1013

    CAS  PubMed  Google Scholar 

  33. Akhter A, Akhtar S, Saeed M, Mansoor S (2014) Chili leaf curl betasatellite enhances symptoms induced by Tomato leaf curl New Delhi virus, a bipartite begomovirus. Int J Agric Biol 16:1225–1228

    Google Scholar 

  34. Nawaz-ul-Rehman MS, Briddon RW, Fauquet CM (2012) A melting pot of old world begomoviruses and their satellites infecting a collection of Gossypium species in Pakistan. PLoS ONE 7(8):e40050

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheng X, Wang X, Wu J, Briddon RW, Zhou X (2011) betaC1 encoded by tomato yellow leaf curl China betasatellite forms multimeric complexes in vitro and in vivo. Virology 409(2):156–162. https://doi.org/10.1016/j.virol.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  36. Wang J, Tang Y, Yang Y, Ma N, Ling X, Kan J, He Z, Zhang B (2016) Cotton leaf curl Multan virus-derived viral small RNAs can target cotton genes to promote viral infection. Front Plant Sci 7:1162. https://doi.org/10.3389/fpls.2016.01162

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yang J-Y, Iwasaki M, Machida C, Machida Y, Zhou X, Chua N-H (2008) βC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes Dev 22(18):2564–2577

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bhattacharyya D, Gnanasekaran P, Kumar RK, Kushwaha NK, Sharma VK, Yusuf MA, Chakraborty S (2015) A geminivirus betasatellite damages the structural and functional integrity of chloroplasts leading to symptom formation and inhibition of photosynthesis. J Exp Bot 66(19):5881–5895

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Eini O, Rasheed M, Randles J (2017) In situ hybridization and promoter analysis reveal that cotton leaf curl Multan betasatellite localizes in the phloem. Acta Virol 61(1):23–31

    CAS  PubMed  Google Scholar 

  40. Srivastava A, Agrawal L, Raj R, Jaidi M, Raj SK, Gupta S, Dixit R, Singh PC, Tripathi T, Sidhu OP, Singh BN, Shukla S, Chauhan PS, Kumar S (2017) Ageratum enation virus infection induces programmed cell death and alters metabolite biosynthesis in papaver somniferum. Front Plant Sci 8:1172. https://doi.org/10.3389/fpls.2017.01172

    Article  PubMed  PubMed Central  Google Scholar 

  41. Noueiry AO, Lucas WJ, Gilbertson RL (1994) Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76(5):925–932

    CAS  PubMed  Google Scholar 

  42. Sanderfoot AA, Lazarowitz SG (1995) Cooperation in viral movement: the geminivirus BL1 movement protein interacts with BR1 and redirects it from the nucleus to the cell periphery. Plant Cell 7(8):1185–1194

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rojas MR, Jiang H, Salati R, Xoconostle-Cázares B, Sudarshana MR, Lucas WJ, Gilbertson RL (2001) Functional analysis of proteins involved in movement of the monopartite begomovirus, tomato yellow leaf curl virus. Virology 291(1):110–125. https://doi.org/10.1006/viro.2001.1194

    Article  CAS  PubMed  Google Scholar 

  44. Gafni Y, Epel BL (2002) The role of host and viral proteins in intra-and inter-cellular trafficking of geminiviruses. Physiol Mol Plant Pathol 60(5):231–241

    CAS  Google Scholar 

  45. Saeed M, Zafar Y, Randles JW, Rezaian MA (2007) A monopartite begomovirus-associated DNA β satellite substitutes for the DNA B of a bipartite begomovirus to permit systemic infection. J Gen Virol 88(10):2881–2889

    CAS  PubMed  Google Scholar 

  46. Patil BL, Fauquet CM (2010) Differential interaction between cassava mosaic geminiviruses and geminivirus satellites. J Gen Virol 91(7):1871–1882

    CAS  PubMed  Google Scholar 

  47. Jyothsna P, Haq QM, Singh P, Sumiya KV, Praveen S, Rawat R, Briddon RW, Malathi VG (2013) Infection of tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus with betasatellites, results in enhanced level of helper virus components and antagonistic interaction between DNA B and betasatellites. Appl Microbiol Biotechnol 97(12):5457–5471. https://doi.org/10.1007/s00253-012-4685-9

    Article  CAS  PubMed  Google Scholar 

  48. Iqbal Z, Shafiq M, Ali I, Mansoor S, Briddon RW (2017) Maintenance of cotton leaf curl multan betasatellite by tomato leaf curl New Delhi virus-analysis by mutation. Front Plant Sci 8:2208. https://doi.org/10.3389/fpls.2017.02208

    Article  PubMed  PubMed Central  Google Scholar 

  49. Alberter B, Rezaian MA, Jeske H (2005) Replicative intermediates of Tomato leaf curl virus and its satellite DNAs. Virology 331(2):441–448

    CAS  PubMed  Google Scholar 

  50. Tahir MN, Amin I, Briddon RW, Mansoor S (2011) The merging of two dynasties—identification of an African cotton leaf curl disease-associated begomovirus with cotton in Pakistan. PLoS ONE 6(5):e20366

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Saunders K, Briddon RW, Stanley J (2008) Replication promiscuity of DNA-β satellites associated with monopartite begomoviruses; deletion mutagenesis of the Ageratum yellow vein virus DNA-β satellite localizes sequences involved in replication. J Gen Virol 89(12):3165–3172

    CAS  PubMed  Google Scholar 

  52. Qing L, Zhou X (2009) Trans-replication of, and competition between, DNA β satellites in plants inoculated with Tomato yellow leaf curl China virus and Tobacco curly shoot virus. Phytopathology 99(6):716–720

    CAS  PubMed  Google Scholar 

  53. Borah BK, Cheema GS, Gill CK, Dasgupta I (2010) A geminivirus-satellite complex is associated with leaf deformity of mentha (Mint) plants in Punjab. Indian J Virol 21(2):103–109

    CAS  PubMed  Google Scholar 

  54. Khan AJ, Idris AM, Al-Saady NA, Al-Mahruki MS, Al-Subhi AM, Brown JK (2008) A divergent isolate of Tomato yellow leaf curl virus from Oman with an associated DNAβ satellite: an evolutionary link between Asian and the Middle Eastern virus–satellite complexes. Virus Genes 36(1):169–176

    CAS  PubMed  Google Scholar 

  55. Chen LF, Rojas M, Kon T, Gamby K, Xoconostle-Cazares B, Gilbertson RL (2009) A severe symptom phenotype in tomato in Mali is caused by a reassortant between a novel recombinant begomovirus (Tomato yellow leaf curl Mali virus) and a betasatellite. Mol Plant Pathol 10(3):415–430. https://doi.org/10.1111/j.1364-3703.2009.00541.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nawaz-ul-Rehman MS, Mansoor S, Briddon RW, Fauquet CM (2009) Maintenance of an Old World betasatellite by a New World helper begomovirus and possible rapid adaptation of the betasatellite. J Virol 83(18):9347–9355

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mubin M, Briddon RW, Mansoor S (2009) Diverse and recombinant DNA betasatellites are associated with a begomovirus disease complex of Digera arvensis, a weed host. Virus Res 142(1–2):208–212. https://doi.org/10.1016/j.virusres.2009.01.020

    Article  CAS  PubMed  Google Scholar 

  58. Khan IA, Akhtar KP, Akbar F, Hassan I, Amin I, Saeed M, Mansoor S (2016) Diversity in betasatellites associated with cotton leaf curl disease during source-to-sink movement through a resistant host. Plant Pathol J 32(1):47–52. https://doi.org/10.5423/ppj.Oa.08.2015.0160

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhang T, Xu X, Huang C, Qian Y, Li Z, Zhou X (2015) A novel DNA motif contributes to selective replication of a geminivirus-associated betasatellite by a helper virus-encoded replication-related protein. J Virol 90(4):2077–2089. https://doi.org/10.1128/jvi.02290-15

    Article  PubMed  Google Scholar 

  60. Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (1999) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. CRC Crit Rev Plant Sci 18(1):71–106

    CAS  Google Scholar 

  61. Rizvi I, Choudhury NR, Tuteja N (2015) Insights into the functional characteristics of geminivirus rolling-circle replication initiator protein and its interaction with host factors affecting viral DNA replication. Arch Virol 160(2):375–387. https://doi.org/10.1007/s00705-014-2297-7

    Article  CAS  PubMed  Google Scholar 

  62. Saunders K, Bedford ID, Stanley J (2001) Pathogenicity of a natural recombinant associated with ageratum yellow vein disease: implications for geminivirus evolution and disease aetiology. Virology 282(1):38–47

    CAS  PubMed  Google Scholar 

  63. Stanley J, Saunders K, Pinner MS, Wong SM (1997) Novel defective interfering dnas associated with ageratum yellow vein geminivirus infection of Ageratum conyzoides. Virology 239(1):87–96

    CAS  PubMed  Google Scholar 

  64. Briddon RW, Bull SE, Amin I, Idris AM, Mansoor S, Bedford ID, Dhawan P, Rishi N, Siwatch SS, Abdel-Salam AM, Brown JK, Zafar Y, Markham PG (2003) Diversity of DNA β, a satellite molecule associated with some monopartite begomoviruses. Virology 312(1):106–121

    CAS  PubMed  Google Scholar 

  65. Tao X, Zhou X (2008) Pathogenicity of a naturally occurring recombinant DNA satellite associated with tomato yellow leaf curl China virus. J Gen Virol 89(1):306–311

    CAS  PubMed  Google Scholar 

  66. Li D, Behjatnia SA, Dry IB, Randles JW, Eini O, Rezaian MA (2007) Genomic regions of tomato leaf curl virus DNA satellite required for replication and for satellite-mediated delivery of heterologous DNAs. J Gen Virol 88(7):2073–2077

    CAS  PubMed  Google Scholar 

  67. Zhou X (2013) Advances in understanding begomovirus satellites. Annu Rev Phytopathol 51:357–381. https://doi.org/10.1146/annurev-phyto-082712-102234

    Article  CAS  PubMed  Google Scholar 

  68. Eini O, Behjatnia SA (2016) The minimal sequence essential for replication and movement of Cotton leaf curl Multan betasatellite DNA by a helper virus in plant cells. Virus Genes 52(5):679–687

    CAS  PubMed  Google Scholar 

  69. Bisaro DM (2006) Silencing suppression by geminivirus proteins. Virology 344(1):158–168

    CAS  PubMed  Google Scholar 

  70. Yang X, Wang Y, Guo W, Xie Y, Xie Q, Fan L, Zhou X (2011) Characterization of small interfering RNAs derived from the geminivirus/betasatellite complex using deep sequencing. PLoS ONE 6(2):e16928. https://doi.org/10.1371/journal.pone.0016928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dong X, van Wezel R, Stanley J, Hong Y (2003) Functional characterization of the nuclear localization signal for a suppressor of posttranscriptional gene silencing. J Virol 77(12):7026–7033

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sunter G, Sunter JL, Bisaro DM (2001) Plants expressing tomato golden mosaic virus AL2 or beet curly top virus L2 transgenes show enhanced susceptibility to infection by DNA and RNA viruses. Virology 285(1):59–70

    CAS  PubMed  Google Scholar 

  73. Vanitharani R, Chellappan P, Pita JS, Fauquet CM (2004) Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J Virol 78(17):9487–9498

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakeley EJ, Veluthambi K, Hohn T, Pooggin MM (2005) Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 79(4):2517–2527

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sharma P, Ikegami M, Kon T (2010) Identification of the virulence factors and suppressors of posttranscriptional gene silencing encoded by Ageratum yellow vein virus, a monopartite begomovirus. Virus Res 149(1):19–27

    CAS  PubMed  Google Scholar 

  76. Venkataravanappa V, Reddy CN, Swaranalatha P, Jalali S, Briddon RW, Reddy MK (2011) Diversity and phylogeography of begomovirus-associated beta satellites of okra in India. Virol J 8(1):555

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kon T, Sharma P, Ikegami M (2007) Suppressor of RNA silencing encoded by the monopartite tomato leaf curl Java begomovirus. Arch Virol 152(7):1273–1282

    CAS  PubMed  Google Scholar 

  78. Li F, Huang C, Li Z, Zhou X (2014) Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression. PLoS Pathog 10(2):e1003921. https://doi.org/10.1371/journal.ppat.1003921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li F, Zhao N, Li Z, Xu X, Wang Y, Yang X, Liu S-S, Wang A, Zhou X (2017) A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana. PLoS Pathog 13(2):e1006213. https://doi.org/10.1371/journal.ppat.1006213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Haxim Y, Ismayil A, Jia Q, Wang Y, Zheng X, Chen T, Qian L, Liu N, Wang Y, Han S, Cheng J, Qi Y, Hong Y, Liu Y (2017) Autophagy functions as an antiviral mechanism against geminiviruses in plants. eLife 6:e23897. https://doi.org/10.7554/elife.23897

    Article  PubMed  PubMed Central  Google Scholar 

  81. Eini O, Dogra S, Selth LA, Dry IB, Randles JW, Rezaian MA (2009) Interaction with a host ubiquitin-conjugating enzyme is required for the pathogenicity of a geminiviral DNA β satellite. Mol Plant Microbe Interact 22(6):737–746

    CAS  PubMed  Google Scholar 

  82. Jie C, Bai-yong S, Xia-xing D, Qian Z, Cheng-hong P (2012) SKP1-CULLIN1-F-box (SCF)-mediated DRG2 degradation facilitated chemotherapeutic drugs induced apoptosis in hepatocellular carcinoma cells. Biochem Biophys Res Commun 420(3):651–655. https://doi.org/10.1016/j.bbrc.2012.03.058

    Article  CAS  Google Scholar 

  83. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70(1):503–533

    CAS  PubMed  Google Scholar 

  84. Jia Q, Liu N, Xie K, Dai Y, Han S, Zhao X, Qian L, Wang Y, Zhao J, Gorovits R (2016) CLCuMuB βc1 subverts ubiquitination by interacting with NbSKP1 s to enhance Geminivirus infection in Nicotiana benthamiana. PLoS Pathog 12(6):e1005668

    PubMed  PubMed Central  Google Scholar 

  85. Pieterse CM, Dicke M (2007) Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci 12(12):564–569

    CAS  PubMed  Google Scholar 

  86. Zhang T, Luan JB, Qi JF, Huang CJ, Li M, Zhou X, Liu SS (2012) Begomovirus–whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor. Mol Ecol 21(5):1294–1304

    PubMed  Google Scholar 

  87. Salvaudon L, De Morae CM, Yang J-Y, Chua N-H, Mescher MC (2013) Effects of the virus satellite gene βC1 on host plant defense signaling and volatile emission. Plant Signal Behav 8(3):e23317

    PubMed  PubMed Central  Google Scholar 

  88. Guo J-Y, Dong S-Z, Yang X-l, Cheng L, Wan F-H, Liu S-S, Zhou X-p, Ye G-Y (2012) Enhanced vitellogenesis in a whitefly via feeding on a begomovirus-infected plant. PLoS ONE 7(8):e43567

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Umbach JL, Cullen BR (2009) The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev 23(10):1151–1164. https://doi.org/10.1101/gad.1793309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Naqvi AR, Choudhury NR, Mukherjee SK, Haq QM (2011) In silico analysis reveals that several tomato microRNA/microRNA* sequences exhibit propensity to bind to tomato leaf curl virus (ToLCV) associated genomes and most of their encoded open reading frames (ORFs). Plant Physiol Biochem 49(1):13–17. https://doi.org/10.1016/j.plaphy.2010.09.013

    Article  CAS  PubMed  Google Scholar 

  91. Shen Q, Liu Z, Song F, Xie Q, Hanley-Bowdoin L, Zhou X (2011) Tomato SlSnRK1 protein interacts with and phosphorylates betaC1, a pathogenesis protein encoded by a geminivirus beta-satellite. Plant Physiol 157(3):1394–1406. https://doi.org/10.1104/pp.111.184648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhong X, Wang ZQ, Xiao R, Cao L, Wang Y, Xie Y, Zhou X (2017) Mimic phosphorylation of a betaC1 encoded by TYLCCNB impairs its functions as a viral suppressor of RNA silencing and a symptom determinant. J Virol 91:e00300–e00317. https://doi.org/10.1128/jvi.00300-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhong X, Wang ZQ, Xiao R, Wang Y, Xie Y, Zhou X (2017) iTRAQ analysis of the tobacco leaf proteome reveals that RNA-directed DNA methylation (RdDM) has important roles in defense against geminivirus-betasatellite infection. J Proteom 152:88–101. https://doi.org/10.1016/j.jprot.2016.10.015

    Article  CAS  Google Scholar 

  94. Shen Q, Hu T, Bao M, Cao L, Zhang H, Song F, Xie Q, Zhou X (2016) Tobacco RING E3 ligase NtRFP1 mediates ubiquitination and proteasomal degradation of a Geminivirus-Encoded βC1. Mol Plant 9(6):911–925

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to virology lab members for their help in writing the review paper. The authors are also thankful to Sara Shakir for her suggestions to improve the review paper.

Funding

The corresponding author is funded by Higher Education commission of Pakistan, with Project No 1682 and 6427 in virology lab, University of agriculture Faisalabad.

Author information

Authors and Affiliations

Authors

Contributions

MM and SI reviewed the literature and helped in writing the paper. NN, MH, AY, and JQ wrote the paper. MSN conceived the idea and finalized the manuscript.

Corresponding author

Correspondence to Muhammad Shah Nawaz-ul-Rehman.

Ethics declarations

Conflict of interest

We declare no conflict of interest in publication of this review paper. The higher education commission of Pakistan has no role in writing of this manuscript.

Research involving human participants and/or animals

The review presented here does not involve any human or animal data.

Additional information

Edited by Seung-Kook Choi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mubin, M., Ijaz, S., Nahid, N. et al. Journey of begomovirus betasatellite molecules: from satellites to indispensable partners. Virus Genes 56, 16–26 (2020). https://doi.org/10.1007/s11262-019-01716-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-019-01716-5

Keywords

Navigation