Skip to main content
Log in

Complete nucleotide sequence of Bacillus subtilis (natto) bacteriophage PM1, a phage associated with disruption of food production

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

“Natto”, considered a traditional food, is made by fermenting boiled soybeans with Bacillus subtilis (natto), which is a natto-producing strain related to B. subtilis. The production of natto is disrupted by phage infections of B. subtilis (natto); hence, it is necessary to control phage infections. PM1, a phage of B. subtilis (natto), was isolated during interrupted natto production in a factory. In a previous study, PM1 was classified morphologically into the family Siphoviridae, and its genome, comprising approximately 50 kbp of linear double-stranded DNA, was assumed to be circularly permuted. In the present study, the complete nucleotide sequence of the PM1 genomic DNA of 50,861 bp (41.3 %G+C) was determined, and 86 open reading frames (ORFs) were deduced. Forty-one ORFs of PM1 shared similarities with proteins deduced from the genome of phages reported so far. Twenty-three ORFs of PM1 were associated with functions related to the phage multiplication process of gene control, DNA replication/modification, DNA packaging, morphogenesis, and cell lysis. Bacillus subtilis (natto) produces a capsular polypeptide of glutamate with a γ-linkage (called poly-γ-glutamate), which appears to serve as a physical barrier to phage adsorption. One ORF of PM1 had similarity with a poly-γ-glutamate hydrolase, which is assumed to degrade the capsular barrier to allow phage progenies to infect encapsulated host cells. The genome analysis of PM1 revealed the characteristics of the phage that are consistent as Bacillus subtilis (natto)-infecting phage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Inatsu, N. Nakamura, Y. Yuriko, T. Fushimi, L. Watanasiritum, S. Kawamoto, Characterization of Bacillus subtilis strains in Thua nao, a traditional fermented soybean food in northern Thailand. Lett. Appl. Microbiol. 43, 237–242 (2006)

    Article  PubMed  CAS  Google Scholar 

  2. K. Jeyaram, W. Mohendro Singh, T. Premarani, A.R. Devi, K.S. Chanu, N.C. Talukdar, M.R. Singh, Molecular identification of dominant microflora associated with ‘Hawaijar’–a traditional fermented soybean (Glycine max (L.)) food of Manipur, India. Int. J. Food Microbiol. 122, 259–268 (2008)

    Article  PubMed  CAS  Google Scholar 

  3. D.Y. Kwon, J.W. Daily III, H.J. Kim, S. Park, Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr. Res. 30, 1–13 (2010)

    Article  PubMed  CAS  Google Scholar 

  4. P. Phromraksa, H. Nagano, T. Boonmars, C. Kamboonruang, Identification of proteolytic bacteria from Thai traditional fermented foods and their allergenic reducing potentials. J. Food Sci. 73, M189–M195 (2008)

    Article  PubMed  CAS  Google Scholar 

  5. N.N. Terlabie, E. Sakyi-Dawson, W.K. Amoa-Awua, The comparative ability of four isolates of Bacillus subtilis to ferment soybeans into dawadawa. Int. J. Food Microbiol. 106, 145–152 (2006)

    Article  PubMed  CAS  Google Scholar 

  6. H.A. Hong, J.-M. Huang, R. Khaneja, L.V. Hiep, M.C. Urdaci, S.M. Cutting, The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J. Appl. Microbiol. 105, 510–520 (2008)

    Article  PubMed  CAS  Google Scholar 

  7. M. Schallmey, A. Singh, O.P. Ward, Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50, 1–17 (2004)

    Article  PubMed  CAS  Google Scholar 

  8. K. Iwai, N. Nakaya, Y. Kawasaki, H. Matsue, Inhibitory effect of natto, a kind of fermented soybeans, on LDL oxidation in vitro. J. Agric. Food Chem. 50, 3592–3596 (2002)

    Article  PubMed  CAS  Google Scholar 

  9. C.-L. Wang, T.B. Ng, F. Yuan, Z.K. Liu, F. Liu, Induction of apoptosis in human leukemia K562 cells by cyclic lipopeptide from Bacillus subtilis natto T-2. Peptides 28, 1344–1350 (2007)

    Article  PubMed  Google Scholar 

  10. Y. Kubo, A.P. Rooney, Y. Tsukakoshi, R. Nakagawa, H. Hasegawa, K. Kimura, Phylogenetic analysis of Bacillus subtilis strains applicable to natto (fermented soybean) production. Appl. Environ. Microbiol. 77, 6463–6469 (2011)

    Article  PubMed  CAS  Google Scholar 

  11. Y. Nishito, Y. Osana, T. Hachiya, K. Popendorf, A. Toyoda, A. Fujiyama, M. Itaya, Y. Sakakibara, Whole genome assembly of a natto production strain Bacillus subtilis natto from very short read data. BMC Genomics 11, 243 (2010)

    Article  PubMed  Google Scholar 

  12. D. Qui, K. Fujita, Y. Sakuma, T. Tanaka, Y. Ohashi, H. Ohshima, M. Tomita, M. Itaya, Comparative analysis of physical maps of four Bacillus subtilis (natto) genomes. Appl. Environ. Microbiol. 70, 6247–6256 (2004)

    Article  Google Scholar 

  13. M. Itaya, K. Matsui, Conversion of Bacillus subtilis 168: natto producing Bacillus subtilis with mosaic genomes Biosci. Biotechnol. Biochem. 63, 2034–2037 (1999)

    Article  CAS  Google Scholar 

  14. H. Brüssow, E. Kutter, in Bacteriophages: biology and applications, ed. by E. Kutter, A. Sulakvelidze (CRC Press, Boca Raton, 2005), pp. 129–163

    Google Scholar 

  15. K. Umene, S. Oohashi, F. Yamanaka, A. Shiraishi, Molecular characterization of the genome of Bacillus subtilis (natto) bacteriophage PM1. a phage associated with disruption of food production. World J. Microbiol. Biotechnol. 25, 1877–1881 (2009)

    Article  CAS  Google Scholar 

  16. G. Bogosian, in The bacteriophages, ed. by R. Calendar (Oxford University Press, Oxford, 2006), pp. 667–673

    Google Scholar 

  17. M. Hongo, A. Yoshimoto, Bacteriophages of Bacillus natto part III. action of phage-induced γ-polyglutamic acid depolymerase on γ-polyglutamic acid and the enzymatic hydrolyzates. Agric. Biol. Chem. 34, 1055–1063 (1970)

    Article  Google Scholar 

  18. K. Kimura, Y. Itoh, Characterization of poly-γ-glutamate hydrolase encoded by a bacteriophage genome: possible role in phage infection of bacillus subtilis encapsulated with poly-γ-glutamate. Appl. Environ. Microbiol. 69, 2491–2497 (2003)

    Article  PubMed  CAS  Google Scholar 

  19. S. Moineau, C. Lévesque, in Bacteriophages: biology and applications, ed. by E. Kutter, A. Sulakvelidze (CRC Press, Boca Raton, 2005), pp. 285–296

    Google Scholar 

  20. H.-W. Ackermann, in Bacteriophages: biology and applications, ed. by E. Kutter, A. Sulakvelidze (CRC Press, Boca Raton, 2005), pp. 67–89

    Google Scholar 

  21. E.J. Kim, J.W. Hong, N.-R. Yun, Y.N. Lee, Characterization of Bacillus phage-K2 isolated from chungkookjang, fermented soybean foodstuff. J. Ind. Microbiol. Biotechnol. 38, 39–42 (2011)

    Article  PubMed  CAS  Google Scholar 

  22. T. Nagai, F. Yamasaki, Bacillus subtilis (natto) bacteriophages isolated in Japan. Food Sci. Technol. Res. 15, 293–298 (2009)

    Article  CAS  Google Scholar 

  23. J. Sambrook, D.W. Russell, Molecular cloning: a laboratory manual (Cold Spring Harbor Laboratory Press, New York, 2001)

    Google Scholar 

  24. T. Akimkina, C. Venien-Bryan, J. Hodgkin, Isolation, characterization and complete nucleotide sequence of a novel temperate bacteriophage Min1, isolated from the nematode pathogen Microbacterium nematophilum. Res. Microbiol. 158, 582–590 (2007)

    Article  PubMed  CAS  Google Scholar 

  25. A. Fujiwara, T. Kawasaki, S. Usami, M. Fujie, T. Yamada, Genomic characterization of Ralstonia solanacearum phage fRSA1 and its related prophage (fRSA1) in strain GMI1000. J. Bacteriol. 190, 143–156 (2008)

    Article  PubMed  CAS  Google Scholar 

  26. T. Yamada, S. Satoh, H. Ishikawa, A. Fujiwara, T. Kawasaki, M. Fujie, H. Ogata, A jumbo phage infecting the phytopathogen Ralstonia solanacearum defines a new lineage of the Myoviridae family. Virology 398, 135–147 (2010)

    Article  PubMed  CAS  Google Scholar 

  27. S.L. Salzberg, A.L. Delcher, S. Kasif, O. White, Microbial gene identification using interpolated Markov models. Nucleic Acids Res. 26, 544–548 (1998)

    Article  PubMed  CAS  Google Scholar 

  28. J. Xiong, Essential Bioinformatics (Cambridge University Press, New York, 2006)

    Book  Google Scholar 

  29. T.M.A. Santos, R.C. Bicalho, Complete genome sequence of vB_EcoM_ECO1230-10: a coliphage with therapeutic potential for bovine metritis. Vet. Microbiol. 148, 267–275 (2011)

    Article  PubMed  CAS  Google Scholar 

  30. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    PubMed  CAS  Google Scholar 

  31. R.H. Stevens, M.R. Ektefaie, D.E. Fouts, The annotated complete DNA sequence of Enterococcus faecalis bacteriophage fEf11 and its comparison with all available phage and predicted prophage genomes. FEMS Microbiol. Lett. 317, 9–26 (2011)

    Article  PubMed  CAS  Google Scholar 

  32. G. Bukovska, L. Klucar, C. Vlcek, J. Adamovic, J. Turna, J. Timko, Complete nucleotide sequence and genome analysis of bacteriophage BFK20-a lytic phage of the industrial producer Brevibacterium flavum. Virology 348, 57–71 (2006)

    Article  PubMed  CAS  Google Scholar 

  33. Z. Lu, E. Altermann, F. Breidt, P. Predki, H.P. Fleming, T.R. Klaenhammer, Sequence analysis of the Lactobacillus plantarum bacteriophage ΦJL-1. Gene 348, 45–54 (2005)

    Article  PubMed  CAS  Google Scholar 

  34. N. Jamalludeen, A.M. Kropinski, R.P. Johnson, E. Lingohr, J. Harel, C.L. Gyles, Complete genomic sequence of bacteriophage φEcoM-GJ1, a novel phage that has myovirus morphology and a podovirius-like RNA polymerase. Appl. Environ. Microbiol. 74, 516–525 (2008)

    Article  PubMed  CAS  Google Scholar 

  35. M.J. Mayer, J. Payne, M.J. Gasson, A. Narbad, Genomic sequence and characterization of the virulent bacteriophage φCTP1 from Clostridium tyrobutyricum and heterologous expression of its endolysin. Appl. Environ. Microbiol. 76, 5415–5422 (2010)

    Article  PubMed  CAS  Google Scholar 

  36. J.C. Alonso, G. Lüder, A.C. Stiege, S. Chai, F. Weise, T.A. Trautner, The complete nucleotide sequence and functional organization of Bacillus subtilis bacteriophage SPP1. Gene 204, 201–212 (1997)

    Article  PubMed  CAS  Google Scholar 

  37. V. Lazarevic, A. Düsterhöft, B. Soldo, H. Hilbert, C. Mauël, D. Karamata, Nucleotide sequence of the Bacillus subtilis temperate bacteriophage SPβc2. Microbiology 145, 1055–1067 (1999)

    Article  PubMed  CAS  Google Scholar 

  38. A.D. Baxevanis, in Bioinformatics, ed. by A.D. Baxevanis, B.F.F. Ouellette (John Wiley & Sons, Inc., Hoboken, 2005), pp. 295–324

    Google Scholar 

  39. J.-M. Claverie, C. Notredame, Bioinformatics for dummies (Wiley Publishing, Inc., Indianapolis, 2007)

    Google Scholar 

  40. H. Brüssow, R.W. Hendrix, Phage genomics: small is beautiful. Cell 108, 13–16 (2002)

    Article  PubMed  Google Scholar 

  41. B. Guttman, R. Raya, E. Kutter, in Bacteriophages: biology and applications, ed. by E. Kutter, A. Sulakvelidze (CRC Press, Boca Raton, 2005), pp. 29–66

    Google Scholar 

  42. E. Kutter, R. Raya, K. Carlson, in Bacteriophages: biology and applications, ed. by E. Kutter, A. Sulakvelidze (CRC Press, Boca Raton, 2005), pp. 165–222

    Google Scholar 

  43. S. Petrovski, R.J. Seviour, D. Tillett, Genome sequence and characterization of the Tsukamurella bacteriophage TPA2. Appl. Environ. Microbiol. 77, 1389–1398 (2011)

    Article  PubMed  CAS  Google Scholar 

  44. A.V. Mardanov, N.V. Ravin, The antirepressor needed for induction of linear plasmid-prophage N15 belongs to the SOS regulon. J. Bacteriol. 189, 6333–6338 (2007)

    Article  PubMed  CAS  Google Scholar 

  45. A. Skowyra, S.A. MacNeill, Identification of essential and non-essential single-stranded DNA-binding proteins in a model archaeal organism. Nucleic Acids Res. 40, 1077–1090 (2012)

    Article  PubMed  CAS  Google Scholar 

  46. T.A. Baker, S.P. Bell, Polymerases and the replisome: machines within machines. Cell 92, 295–305 (1998)

    Article  PubMed  CAS  Google Scholar 

  47. M. Makowska-Grzyska, J.M. Kaguni, Primase directs the release of DnaC from DnaB. Mol. Cell 37, 90–101 (2010)

    Article  PubMed  CAS  Google Scholar 

  48. J.M. Kaguni, DnaA: controlling the initiation of bacterial DNA replication and more. Annu. Rev. Microbiol. 60, 351–371 (2006)

    Article  PubMed  CAS  Google Scholar 

  49. W.K. Smits, H. Merrikh, C.Y. Bonilla, A.D. Grossman, Primosomal proteins DnaD and DnaB are recruited to chromosomal regions bound by DnaA in Bacillus subtilis. J. Bacteriol. 193, 640–648 (2011)

    Article  PubMed  CAS  Google Scholar 

  50. C.E. Bell, Structure and mechanism of Escherichia coli RecA ATPase. Mol. Microbiol. 58, 358–366 (2005)

    Article  PubMed  CAS  Google Scholar 

  51. V.R.M. Chavali, C. Madhurantakam, S. Ghorai, S. Roy, A.K. Das, A.K. Ghosh, Genome segment 6 of Antheraea mylitta cypovirus encodes a structural protein with ATPase activity. Virology 377, 7–18 (2008)

    Article  PubMed  CAS  Google Scholar 

  52. A.-C. Déclais, D.M.J. Lilley, New insight into the recognition of branched DNA structure by junction-resolving enzymes. Curr. Opin. Struct. Biol. 18, 86–95 (2008)

    Article  PubMed  Google Scholar 

  53. I. Grainge, C. Lesterlin, D.J. Sherratt, Activation of XerCD-dif recombination by the FtsK DNA translocase. Nucleic Acids Res. 39, 5140–5148 (2011)

    Article  PubMed  CAS  Google Scholar 

  54. C.E. Catalano, in Viral genome packaging machines: genetics, structure, and mechanism, ed. by C.E. Catalano (Landes Bioscience/Eurekah.com, Georgetown, 2005), pp. 1–4

    Chapter  Google Scholar 

  55. F. Arisaka, Assembly and infection process of bacteriophage T4. Chaos 15, 047502 (2005)

    Article  PubMed  Google Scholar 

  56. P.G. Leiman, S. Kanamaru, V.V. Mesyanzhinov, F. Arisaka, M.G. Rossmann, Structure and morphogenesis of bacteriophage T4. Cell. Mol. Life Sci. 60, 2356–2370 (2003)

    Article  PubMed  CAS  Google Scholar 

  57. B. Becker, N. de la Fuente, M. Gassel, D. Günther, P. Tavares, R. Lurz, T.A. Trautner, J.C. Alonso, Head morphogenesis genes of the Bacillus subtilis bacteriohage SPP1. J. Mol. Biol. 268, 822–839 (1997)

    Article  PubMed  CAS  Google Scholar 

  58. N.K. Abuladze, M. Gingery, J. Tsai, F.A. Eiserling, Tail length determination in bacteriophage T4. Virology 199, 301–310 (1994)

    Article  PubMed  CAS  Google Scholar 

  59. B.H. Yoon, H.I. Chang, Complete genomic sequence of the Lactobacillus temperate phage LF1. Arch. Virol. 156, 1909–1912 (2011)

    Article  PubMed  CAS  Google Scholar 

  60. T.G. Bernhardt, I.-N. Wang, D.K. Struck, R. Young, Breaking free: “protein antibiotics” and phage lysis. Res. Microbiol. 153, 493–501 (2002)

    Article  PubMed  CAS  Google Scholar 

  61. V.A. Fischetti, Bacteriophage lysins as effective antibacterials. Curr. Opin. Microbiol. 11, 393–400 (2008)

    Article  PubMed  CAS  Google Scholar 

  62. R. Young, I.-N. Wang, in The bacteriophages, ed. by R. Calendar (Oxford University Press, Oxford, 2006), pp. 104–125

    Google Scholar 

  63. D. Daniels, J. Schroeder, W. Szybalski, F. Sanger, F. Blattner, in Lambda II, ed. by R.W. Hendrix, J.W. Roberts, F.W. Stahl, R.A. Weisberg (Cold Spring Harbor Laboratory, USA, 1983), pp. 469–517

    Google Scholar 

  64. K.V. Srividhya, S. Krishnaswamy, Subclassification and targeted characterization of prophage-encoded two-component cell lysis cassette. J. Biosci. 32, 979–990 (2007)

    Article  PubMed  CAS  Google Scholar 

  65. C. Osera, G. Amati, C. Calvio, A. Galizzi, SwrAA activates poly-γ-glutamate synthesis in addition to swarming in Bacillus subtilis. Microbiology 155, 2282–2287 (2009)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Part of this study was supported by grants from the Ministry of Education, Science, Technology, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Umene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umene, K., Shiraishi, A. Complete nucleotide sequence of Bacillus subtilis (natto) bacteriophage PM1, a phage associated with disruption of food production. Virus Genes 46, 524–534 (2013). https://doi.org/10.1007/s11262-013-0876-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-013-0876-4

Keywords

Navigation