Skip to main content

Advertisement

Log in

When the same is not the same: phenotypic variation reveals different plant ecological strategies within species occurring in distinct Neotropical savanna habitats

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Variations in abiotic characteristics such as soil water availability and fertility impose different selective pressures on plant populations. This may produce intraspecific variability in functional traits, even at a fine spatial scale. We investigated whether functional traits related to water-use efficiency, resource-retention strategy, soil nutrient acquisition, and fire tolerance differ in species that occur in two different habitats of Brazilian Cerrado: rocky savannas and savanna woodlands. Rocky savannas occur over sandstone, quartzite outcrops and have shallow nutrient-poor and low-moisture rocky soils, while savanna woodlands occur over well-drained and deep soils with frequent fire regimes. We measured nine functional traits of 40 tree species that occur in both habitats. Rocky savanna individuals exhibited a greater water-use efficiency strategy. The resource-retention strategy in rocky savanna individuals was corroborated by lower adult maximum height. However, despite the lower nutrient availability in rocky savanna soils, we only detected lower leaf phosphorus content in individuals from this habitat. Furthermore, individuals from both habitats had equally thick bark, suggesting that the fire-defense strategy is related to a stable, rather than plastic trait. Overall, our results highlight the central role of contrasting soil water availability patterns in driving phenotypic plasticity within species. We conclude that savanna species are responding to water and nutrient availabilities, via plasticity in traits related to the resource-retention strategy, and preparing for future fires, via uniformly thick bark. Wide plant distribution in contrasting habitats is possible for species that can shift ecological strategies to survive in nutrient- and water-limited habitats such as rocky savannas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ackerly D (2004) Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol Monogr 74:25–44. doi:10.1890/03-4022

    Article  Google Scholar 

  • Ackerly DD, Cornwell WK (2007) A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecol Lett 10:135–145. doi:10.1111/j.1461-0248.2006.01006.x

    Article  CAS  PubMed  Google Scholar 

  • Ackerly D, Knight C, Weiss S, Barton K, Starmer K (2002) Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130:449–457. doi:10.1007/s004420100805

    Article  CAS  PubMed  Google Scholar 

  • Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C, Franco M (2014) Functional traits explain variation in plant life history strategies. Proc Natl Acad Sci USA 111:740–745. doi:10.1073/pnas.1410430111

    Article  CAS  PubMed  Google Scholar 

  • Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326. doi:10.1126/science.1060701

    Article  CAS  PubMed  Google Scholar 

  • Batalha MA, Silva IA, Cianciaruso MV, de Carvalho GH (2011) Trait diversity on the phylogeny of cerrado woody species. Oikos 120:1741–1751. doi:10.1111/j.1600-0706.2011.19513.x

    Article  Google Scholar 

  • Benites VM, Schaefer CEG, Simas FN, Santos HG (2007) Soils associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Braz J Bot 30:569–577. doi:10.1590/S0100-84042007000400003

    Article  Google Scholar 

  • Bucci SJ, Goldstein G, Meinzer FC, Scholz FG, France AC, Bustamante M (2004) Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Tree Physiol 24:891–899

    Article  CAS  PubMed  Google Scholar 

  • Bustamante MMC, Martinelli LA, Silva DA, Camargo PB, Klink CA, Domingues TF, Santos RV (2004) 15 N natural abundance in woody plants and soils of Central brazilian savannas (Cerrado). Ecol Appl 14:200–213. doi:10.1890/01-6013

    Article  Google Scholar 

  • Carlucci MB, Duarte LDS, Pillar VD (2011) Nurse rocks influence forest expansion over native grassland in southern Brazil. J Veg Sci 22:111–119. doi:10.1111/j.1654-1103.2010.01229.x

    Article  Google Scholar 

  • Chave J, Muller-Landau HC, Baker TR, Easdale TA, Steege H, Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 Neotropical tree species. Ecol Appl 16:2356–2367

    Article  PubMed  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366. doi:10.1111/j.1461-0248.2009.01285.x

    Article  PubMed  Google Scholar 

  • Cianciaruso MV, Silva IA, Batalha MA, Gaston KJ, Petchey OL (2012) The influence of fire on phylogenetic and functional structure of woody savannas: moving from species to individuals. Perspect Plant Ecol Evol Syst 14:205–216. doi:10.1016/j.ppees.2011.11.004

    Article  Google Scholar 

  • Cianciaruso MV, Silva IA, Manica LT, Souza JP (2013) Leaf habit does not predict leaf functional traits in cerrado woody species. Basics Appl Ecol 14:404–412. doi:10.1016/j.baae.2013.05.002

    Article  Google Scholar 

  • Cornelissen JHC, Lavore S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380. doi:10.1071/BT02124

    Article  Google Scholar 

  • Coutinho LM (1990) Fire in the ecology of the Brazilian Cerrado. In: Goldammer JG (ed) Fire in the tropical biota. Springer, Berlin, pp 82–105

    Chapter  Google Scholar 

  • Dantas VDL, Pausas JG (2013) The lanky and the corky: fire-escape strategies in savanna woody species. J Ecol 101:1265–1272. doi:10.1111/1365-2745.12118

    Article  Google Scholar 

  • Dantas VL, Pausas JG, Batalha MA, Loiola PP, Cianciaruso MV (2013) The role of fire in structuring trait variability in Neotropical savannas. Oecologia 171:487–494. doi:10.1007/s00442-012-2431-8

    Article  Google Scholar 

  • Dantas VDL, Batalha MA, França H, Pausas JG (2015) Resource availability shapes fire-filtered savannas. J Veg Sci 26:395–403. doi:10.1111/jvs.12247

    Article  Google Scholar 

  • Detmann KDSC, Delgado MN, Rebello VPA, Leite TDS, Azevedo AA, Kasuya MCM, Almeida AMD (2008) Comparação de métodos para a observação de fungos micorrízicos arbusculares e endofíticos do tipo dark septate em espécies nativas de Cerrado. Rev Bras Cienc do Solo 32:1883–1890

    Article  Google Scholar 

  • Diaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A et al (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304. doi:10.1111/j.1654-1103.2004.tb02266.x

    Article  Google Scholar 

  • Fajardo A, Piper FI (2011) Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile. New Phytol 189:259–271. doi:10.1111/j.1469-8137.2010.03468.x

    Article  PubMed  Google Scholar 

  • Fridley JD, Grime JP (2010) Community and ecosystem effects of intraspecific genetic diversity in grassland microcosms of varying species diversity. Ecology 91:2272–2283. doi:10.1890/09-1240.1

    Article  PubMed  Google Scholar 

  • Furley PA, Ratter JA (1988) Soil resource and plant communities of the central Brazilian Cerrado and their development. J Biogeogr 15:97–108. doi:10.2307/2845050

    Article  Google Scholar 

  • Goldstein G, Meinzer FC, Bucci SJ, Scholz FG, Franco AC, Hoffmann WA (2008) Water economy of Neotropical savanna trees: six paradigms revisited. Tree Physiol 28:395–404

    Article  PubMed  Google Scholar 

  • Graham CH, Parra JL, Rahbek C, McGuire JA (2009) Phylogenetic structure in tropical hummingbird communities. Proc Natl Acad Sci USA 106:19673–19678. doi:10.1073/pnas.0901649106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwood S, Ruiz-Benito P, Martınez-Vilalta J, Lloret F, Kitzberger T, Allen CD, Fensham R, Laughlin DC, Kattge J, Bonisch G, Kraft NJB, Jump AS (2017) Tree mortality across biomes is promoted by drought intensity lower wood density and higher specific leaf area. Ecol Lett 20:539–553

    Article  PubMed  Google Scholar 

  • Hacke UG, Sperr JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461. doi:10.1007/s004420100628

    Article  PubMed  Google Scholar 

  • Hoffmann WA, Orthen B, Nascimento PKV (2003) Comparative fire ecology of tropical savanna and forest trees. Funct Ecol 17:720–726. doi:10.1111/j.1365-2435.2003.00796.x

    Article  Google Scholar 

  • Hoffmann WA, Franco AC, Moreira MZ, Haridasan M (2005) Specific leaf area explains differences in leaf traits between congeneric savanna and forest trees. Funct Ecol 19:932–940. doi:10.1111/j.1365-2435.2005.01045.x

    Article  Google Scholar 

  • Hoffmann WA, Marchin RM, Abit P, Lau OL (2011) Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Glob Chan Biol 17:2731–2742. doi:10.1111/j.1365-2486.2011.02401.x

    Article  Google Scholar 

  • Hoffmann WA, Geiger EL, Gotsch SG, Rossatto DR, Silva LC, Lau OL et al (2012) Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol Lett 15:759–768. doi:10.1111/j.1461-0248.2012.01789.x

    Article  PubMed  Google Scholar 

  • Laureto LM, Cianciaruso MV (2015) Trait distribution patterns in savanna and forest plant assemblages and their relationship with soil features. Plant Ecol 216:629–639. doi:10.1007/s11258-015-0464-x

    Article  Google Scholar 

  • Maracahipes L, Lenza E, Marimon BS, Oliveira EA, Pinto JRR, Marimon-Junior BH (2011) Estrutura e composição florística da vegetação lenhosa em Cerrado rupestre na transição Cerrado-Floresta Amazônica, Mato Grosso, Brasil. Biota Neotrop 11:133–141. doi:10.1590/S1676-06032011000100013

    Article  Google Scholar 

  • Maracahipes-Santos L, Lenza E, Santos JO et al (2015) Diversity, floristic composition, and structure of the woody vegetation of the Cerrado in the Cerrado-Amazon transition zone in Mato Grosso, Brazil. Braz J Bot 38:877–887. doi:10.1007/s40415-015-0186-2

    Article  Google Scholar 

  • Marimon-Junior BH, Haridasan M (2005) Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste de Mato Grosso, Brasil. Acta Bot Bras 19:913–926

    Article  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185. doi:10.1016/j.tree.2006.02.002

    Article  PubMed  Google Scholar 

  • Mews HA, Pinto JRR, Eisenlohr PV, Lenza E (2014) Does size matter? Conservation implications of differing woody population sizes with equivalent occurrence and diversity of species for threatened savanna habitats. Biodivers Conserv 23:1119–1131. doi:10.1007/s10531-014-0651-4

    Article  Google Scholar 

  • Neves SPS, Funch R, Conceição AA, Miranda LAP, Funch LS (2016) What are the most important factors determining different vegetation types in the Chapada Diamantina, Brazil? Braz J Biol 76:315–333. doi:10.1590/1519-6984.13814

    Article  CAS  PubMed  Google Scholar 

  • Niinemets U (2001) Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82:453–469. doi:10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2

    Article  Google Scholar 

  • Oliveira RS, Galvão HC, Campos MC, Eller CB, Pearse SJ, Lambers H (2015) Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types. New Phytol 205:1183–1194. doi:10.1111/nph.13175

    Article  CAS  PubMed  Google Scholar 

  • Oliveira-Filho AT, Ratter JA (2002) Vegetation physiognomies and woody flora of the Cerrado Biome. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil. Columbia University Press, New York, pp 453–469

    Chapter  Google Scholar 

  • Paine CET, Stahl C, Courtois EA, Patiño S, Sarmiento C, Baraloto C (2010) Functional explanations for variation in bark thickness in tropical rain forest trees. Funct Ecol 24:1202–1210. doi:10.1111/j.1365-2435.2010.01736.x

    Article  Google Scholar 

  • Pau G, Fuchs F, Sklyar O, Boutros M, Huber W (2010) EBImage-an R package for image processing with applications to cellular phenotypes. Bioinformatics 26:979–981. doi:10.1093/bioinformatics/btq046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pausas JG (2015) Bark thickness and fire regime. Funct Ecol 29:315–327. doi:10.1111/1365-2435.12372

    Article  Google Scholar 

  • Pereira-Dias F, Santos M (2015) Adaptive strategies against water stress: a study comparing leaf morphoanatomy of rupicolous and epiphytic species of Gesneriaceae. Braz J Bot 38:911–919. doi:10.1007/s40415-015-0180-8

    Article  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234. doi:10.1071/BT12225

    Article  Google Scholar 

  • Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588. doi:10.1111/j.1469-8137.2009.02830.x

    Article  PubMed  Google Scholar 

  • R Core Development Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

  • Reich PB (2000) Do tall trees scale physiological heights? Trends Ecol Evol 15:41–42. doi:10.1016/S0169-5347(99)01734-6

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monogr 62:365–392. doi:10.2307/2937116

    Article  Google Scholar 

  • Ribeiro JF, Walter BMT (2008) Fitofisionomias do bioma Cerrado. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: ecologia e flora. Embrapa Cerrados, Planaltina, pp. 19–45

    Google Scholar 

  • Rosell JA (2016) Bark thickness across the angiosperms: more than just fire. New Phytol 211:90–102. doi:10.1111/nph.13889

    Article  CAS  PubMed  Google Scholar 

  • Rosell JA, Gleason SM, Mendez-Alonzo R, Chang Y, Westoby M (2014) Bark functional ecology: evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytol 201:486–497. doi:10.1111/nph.12541

    Article  PubMed  Google Scholar 

  • Rosnow RL, Rosenthal R (1996) Computing contrasts, effect sizes, and counternulls on other people’s published data: general procedures for research consumers. Psychol Methods 1:331. doi:10.1037/1082-989X.1.4.331

    Article  Google Scholar 

  • Rossatto DR, Hoffmann WA, Silva LDCR, Haridasan M, Sternberg LS, Franco AC (2013) Seasonal variation in leaf traits between congeneric savanna and forest trees in Central Brazil: implications for forest expansion into savanna. Trees 27:1139–1150. doi:10.1007/s00468-013-0864-2

    Article  Google Scholar 

  • Rossatto DR, Carvalho FA, Haridasan M (2015) Soil and leaf nutrient content of tree species support deciduous forests on limestone outcrops as a eutrophic ecosystem. Acta Bot Bras 29:231–238. doi:10.1590/0102-33062014abb0039

    Article  Google Scholar 

  • Rozendaal DMA, Hurtado VH, Poorter L (2006) Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Funct Ecol 20:207–216. doi:10.1111/j.1365-2435.2006.01105.x

    Article  Google Scholar 

  • Santos TRR, Pinto JRR, Lenza E (2012) Floristic relationships of the woody component in rocky outcrops savanna areas in Central Brazil. Flora 207:541–550. doi:10.1016/j.flora.2012.06.015

    Article  Google Scholar 

  • Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A et al (2015) A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol Lett 18:1406–1419. doi:10.1111/ele.12508

    Article  PubMed  Google Scholar 

  • Silva JMC, Bates JM (2002) Biogeographic patterns and conservation in the South American Cerrado: a tropical Savanna hotspot. Bioscience 52:225–233. doi:10.1641/0006-3568

    Article  Google Scholar 

  • Simon MF, Pennington RT (2012) The evolution of adaptations of woody plants in the savannas of the Brazilian Cerrado. Int J Plant Sci 173:711–723. doi:10.1086/665973

    Article  Google Scholar 

  • Simon MF, Grether R, Queiroz LP, Skema C, Pennington RT, Hughes CE (2009) Recent assembly of the Cerrado, a Neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc Natl Acad Sci USA 106:20359–20364. doi:10.1073/pnas.0903410106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swenson NG, Enquist BJ (2007) Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am J Bot 94:451–459

    Article  PubMed  Google Scholar 

  • Valladares F, Matesanz S, Guilhaumon F, Araújo M, Balaguer L, Benito-Garz M et al (2014) The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett 17:1351–1364. doi:10.1111/ele.12348

    Article  PubMed  Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227. doi:10.1023/A:1004327224729

    Article  CAS  Google Scholar 

  • Westoby M, Falster D, Moles A, Vesk P, Wright I (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159. doi:10.1146/annurev.ecolsys.33.010802.150452

    Article  Google Scholar 

  • Wright IJ, Westoby M (2003) Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct Ecol 17:10–19. doi:10.1046/j.1365-2435.2003.00694.x

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M (2001) Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct Ecol 15:423–434

    Article  Google Scholar 

  • Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-Manriquez G, Martinez-Ramos M et al (2007) Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Ann Bot 99:1003–1015. doi:10.1093/aob/mcl066

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a competitive grant from CNPq to RGC (Rede Cerrado CNPq/PPBio, Project No. 457406/2012-7), two research grants to MVC (GENPAC: CNPq 563727/2010-1, FAPEG 563624/2010-8; and Universal/CNPq 476599/2012-1), and scholarships to CCS and LM from CAPES/MEC. RGC and MVC are continuously supported with a productivity grants from CNPq, which we gratefully acknowledge. We thank J.W. Veldman for his detailed review and helpful comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosane G. Collevatti.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by William E. Rogers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Cássia-Silva, C., Cianciaruso, M.V., Maracahipes, L. et al. When the same is not the same: phenotypic variation reveals different plant ecological strategies within species occurring in distinct Neotropical savanna habitats. Plant Ecol 218, 1221–1231 (2017). https://doi.org/10.1007/s11258-017-0765-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-017-0765-3

Keywords

Navigation