Skip to main content
Log in

Ecotypic differentiation of two sympatric chemotypes of Barbarea vulgaris (Brassicaceae) with different biotic resistances

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Evolution of ecotypic differentiation and maintenance of divergence in sympatry is more likely if populations occupy different habitats. Two genetically divergent chemotypes of Barbarea vulgaris (Brassicaceae) with contrasting insect and disease resistances (G- and P-type) occupy different geographical ranges in Eurasia but co-occur in Denmark. Here, they grow mostly in separate populations, posing the question why they have not merged. In a 2-year reciprocal transplant experiment, we tested whether the two plant types prefer different habitats and are adapted to these, possibly influenced by selection by herbivores. Vegetation and soil analyses indicated that the G-type occurs in slightly drier, less productive and more alkaline sites than the P-type. Plants planted at sites of their own chemotype had a higher biomass in the first year than plants of the non-resident chemotype, but were more damaged by beetle herbivory. This suggests that herbivores have adapted genetically or plastically to the resident chemotype. G-plants were less damaged by molluscs than P-plants, which may be caused by their content of saponins or glucosinolates. Levels of glucosinolates in siliques were higher in G-plants, but varied strongly among sites. Survival, reproduction and biomass in the second year did not differ between plants growing at sites of their own chemotype and plants of the other chemotype. Thus, the two chemotypes of B. vulgaris are adapted to different habitats to some extent, which could contribute to maintain their differentiation in sympatry. Herbivory by some insects, however, may counteract this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agerbirk N, Olsen CE (2011) Isoferuloyl derivatives of five seed glucosinolates in the crucifer genus Barbarea. Phytochemistry 72:610–623. doi:10.1016/j.phytochem.2011.01.034

    Article  CAS  Google Scholar 

  • Agerbirk N, Olsen CE (2012) Glucosinolate structures in evolution. Phytochemistry 77:16–45. doi:10.1016/j.phytochem.2012.02.005

    Article  CAS  Google Scholar 

  • Agerbirk N, Olsen CE (2015) Glucosinolate hydrolysis products in the crucifer Barbarea vulgaris include a thiazolidine-2-one from a specific phenolic isomer as well as oxazolidine-2-thiones. Phytochemistry 115:143–151. doi:10.1016/j.phytochem.2014.11.002

    Article  CAS  Google Scholar 

  • Agerbirk N, Olsen CE, Nielsen JK (2001) Seasonal variation in leaf glucosinolates and insect resistance in two types of Barbarea vulgaris ssp arcuata. Phytochemistry 58:91–100

    Article  CAS  Google Scholar 

  • Agerbirk N, Olsen CE, Bibby BM, Frandsen HO, Brown LD, Nielsen JK, Renwick JAA (2003a) A saponin correlated with variable resistance of Barbarea vulgaris to the diamondback moth Plutella xylostella. J Chem Ecol 29:1417–1433. doi:10.1023/A:1024217504445

    Article  CAS  Google Scholar 

  • Agerbirk N, Ørgaard M, Nielsen JK (2003b) Glucosinolates, flea beetle resistance, and leaf pubescence as taxonomic characters in the genus Barbarea (Brassicaceae). Phytochemistry 63:69–80. doi:10.1016/s0031-9422(02)00750-1

    Article  CAS  Google Scholar 

  • Agerbirk N, Chew FS, Olsen CE, Jørgensen K (2010) Leaf and floral parts feeding by orange tip butterfly larvae depends on larval position but not on glucosinolate profile or nitrogen level. J Chem Ecol 36:1335–1345. doi:10.1007/s10886-010-9880-5

    Article  CAS  Google Scholar 

  • Agerbirk N, Olsen CE, Heimes C, Christensen S, Bak S, Hauser TP (2015) Multiple hydroxyphenethyl glucosinolate isomers and their tandem mass spectrometric distinction in a geographically structured polymorphism in the crucifer Barbarea vulgaris. Phytochemistry 115:130–142. doi:10.1016/j.phytochem.2014.09.003

    Article  CAS  Google Scholar 

  • Al-Shehbaz IA (1988) The genera of Arabideae (Cruciferae; Brassicaceae) in the Southeastern United States. J Arnold Arbor 69:85–166

    Article  Google Scholar 

  • Alvarez N, Thiel-Egenter C, Tribsch A, Holderegger R, Manel S, Schönswetter P, Taberlet P, Brodbeck S, Gaudeul M, Gielly L, Küpfer P, Mansion G, Negrini R, Paun O, Pellecchia M, Rioux D, Schüpfer F, van Loo M, Winkler M, Gugerli F, IntraBioDiv Consortium (2009) History or ecology? Substrate type as a major driver of spatial genetic structure in alpine plants. Ecol Lett 12:632–640. doi:10.1111/j.1461-0248.2009.01312.x

    Article  Google Scholar 

  • Augustin JM, Drok S, Shinoda T, Sanmiya K, Nielsen JK, Khakimov B, Olsen CE, Hansen EB, Kuzina V, Ekstrøm CT, Hauser T, Bak S (2012) UDP-glycosyltransferases from the UGT73C subfamily in Barbarea vulgaris catalyze sapogenin 3-O-glucosylation in saponin-mediated insect resistance. Plant Physiol 160:1881–1895. doi:10.1104/pp.112.202747

    Article  CAS  PubMed Central  Google Scholar 

  • Badenes-Perez FR, Gershenzon J, Heckel DG (2014) Insect attraction versus plant defense: young leaves high in glucosinolates stimulate oviposition by a specialist herbivore despite poor larval survival due to high saponin content. PLoS ONE 9:e95766. doi:10.1371/journal.pone.0095766

    Article  PubMed Central  Google Scholar 

  • Barton NH, Hewitt GM (1989) Adaptation, speciation and hybrid zones. Nature 341:497–503

    Article  CAS  Google Scholar 

  • Bernhardsson C, Robinson KM, Abreu IN, Jansson S, Albrectsen BR, Ingvarsson PK (2013) Geographic structure in metabolome and herbivore community co-occurs with genetic structure in plant defence genes. Ecol Lett 16:791–798. doi:10.1111/ele.12114

    Article  Google Scholar 

  • Bischoff A, Müller-Schärer H (2010) Testing population differentiation in plant species—how important are environmental maternal effects. Oikos 119:445–454. doi:10.1111/j.1600-0706.2009.17776.x

    Article  Google Scholar 

  • Bischoff A, Crémieux L, Šmilauerova M, Lawson CS, Mortimer SR, Doležal J, Lanta V, Edwards AR, Brook AJ, Macel M, Leps J, Steinger T, Müller-Schärer H (2006) Detecting local adaptation in widespread grassland species—the importance of scale and local plant community. J Ecol 94:1130–1142. doi:10.1111/j.1365-2745.2006.01174.x

    Article  Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie, Grundzüge der Vegetationskunde. Springer, Wien

    Book  Google Scholar 

  • Bryant JP, Chapin FS, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368

    Article  CAS  Google Scholar 

  • Christensen S (2014) Resistances to an insect herbivore and a phytopathogen in Barbarea vulgaris: geography, hybridisation and hybrid performance. Dissertation, University of Copenhagen

  • Christensen S, Heimes C, Agerbirk N, Kuzina V, Olsen CE, Hauser TP (2014) Different geographical distributions of two chemotypes of Barbarea vulgaris that differ in resistance to insects and a pathogen. J Chem Ecol 40:491–501. doi:10.1007/s10886-014-0430-4

    Article  CAS  Google Scholar 

  • Cogni R, Trigo JR, Futuyma DJ (2011) Varying herbivore population structure correlates with lack of local adaptation in a geographic variable plant-herbivore interaction. PLoS ONE 6:e29220

    Article  CAS  PubMed Central  Google Scholar 

  • Crémieux L, Bischoff A, Šmilauerov M, Lawson CS, Mortimer SR, Doležal J, Lanta V, Edwards AR, Brook AJ, Tscheulin T, Macel M, Leps J, Müller-Schärer H, Steinger T (2008) Potential contribution of natural enemies to patterns of local adaptation in plants. New Phytol 180:524–533. doi:10.1111/j.1469-8137.2008.02545.x

    Article  Google Scholar 

  • del Carmen Martínez-Ballesta M, Moreno DA, Carvajal M (2013) The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int J Mol Sci 14:11607–11625. doi:10.3390/ijms140611607

    Article  PubMed Central  Google Scholar 

  • Galloway LF, Fenster CB (2000) Population differentiation in an annual legume: Local adaptation. Evolution 54:1173–1181. doi:10.1554/0014-3820(2000)054[1173:PDIAAL]2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  • Hamilton JG, Zangerl AR, DeLucia EH, Berenbaum MR (2001) The carbon–nutrient balance hypothesis: its rise and fall. Ecol Lett 4:86–95. doi:10.1046/j.1461-0248.2001.00192.x

    Article  Google Scholar 

  • Hamlin JAP, Arnold ML (2014) Determining population structure and hybridization for two iris species. Ecol Evol 4:743–755. doi:10.1002/ece3.964

    Article  PubMed Central  Google Scholar 

  • Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, Toomajian C, Roux F, Bergelson J (2011) Adaptation to climate across the Arabidopsis thaliana genome. Science 334:83–86. doi:10.1126/science.1209244

    Article  CAS  Google Scholar 

  • Hauser T, Toneatto F, Nielsen J (2012) Genetic and geographic structure of an insect resistant and a susceptible type of Barbarea vulgaris in western Europe. Evol Ecol 26:529–611. doi:10.1007/s10682-011-9515-5

    Article  Google Scholar 

  • Heimes C, Thiele J, van Mölken T, Hauser T (2015) Interactive impacts of a herbivore and a pathogen on two resistance types of Barbarea vulgaris (Brassicaceae). Oecologia 177:441–452. doi:10.1007/s00442-014-3113-5

    Article  PubMed  Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JJA (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83. doi:10.1146/annurev.ento.54.110807.090623

    Article  CAS  Google Scholar 

  • Kalske A, Muola A, Laukkanen L, Mutikainen P, Leimu R (2012) Variation and constraints of local adaptation of a long-lived plant, its pollinators and specialist herbivores. J Ecol 100:1359–1372. doi:10.1111/j.1365-2745.2012.02008.x

    Article  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241. doi:10.1111/j.1461-0248.2004.00684.x

    Article  Google Scholar 

  • Khakimov B, Kuzina V, Erthmann PO, Fukushima EO, Augustin JM, Olsen CE, Scholtalbers J, Volpin H, Andersen SB, Hauser TP, Muranaka T, Bak S (2015) Identification and genome organization of saponin pathway genes from a wild crucifer, and their use for transient production of saponins in Nicotiana benthamiana. Plant J 84:478–490

    Article  CAS  Google Scholar 

  • Liu H, Stiling P (2006) Testing the enemy release hypothesis: a review and meta-analysis. Biol Invasions 8:1535–1545. doi:10.1007/s10530-005-5845-y

    Article  Google Scholar 

  • Liu T, Zhang X, Yang H, Agerbirk N, Qiu Y, Wang H, Shen D, Song J, Li X (2016) Aromatic glucosinolate biosynthesis pathway in Barbarea vulgaris and its response to Plutella xylostella infestation. Front Plant Sci 7:83

    PubMed  PubMed Central  Google Scholar 

  • Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237. doi:10.1016/j.tree.2005.02.010

    Article  Google Scholar 

  • Martinkova J, Klimesova J, Mihulka S (2008) Compensation of seed production after severe injury in the short-lived herb Barbarea vulgaris. Basic Appl Ecol 9:44–54

    Article  Google Scholar 

  • Mosleh Arany A, de Jong TJ, Kim HK, van Dam NM, Choi YH, van Mil HGJ, Verpoorte R, van der Meijden E (2009) Genotype–environment interactions affect flower and fruit herbivory and plant chemistry of Arabidopsis thaliana in a transplant experiment. Ecol Res 24:1161–1171. doi:10.1007/s11284-009-0597-2

    Article  Google Scholar 

  • Nielsen JK (1997) Variation in defences of the plant Barbarea vulgaris and in counter adaptations by the flea beetle Phyllotreta nemorum. Entomol Exp Appl 82:25–35. doi:10.1046/j.1570-7458.1997.00110.x

    Article  Google Scholar 

  • Nielsen JK, Nagao T, Okabe H, Shinoda T (2010) Resistance in the plant, Barbarea vulgaris, and counter-adaptations in flea beetles mediated by saponins. J Chem Ecol 36:277–285. doi:10.1007/s10886-010-9758-6

    Article  CAS  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/

  • Renwick JAA (2002) The chemical world of crucivores: lures, treats and traps. Entomol Exp Appl 104:35–42

    Article  CAS  Google Scholar 

  • Rich TCG (1987) The genus Barbarea R.Br. (Cruciferae) in Britain and Ireland. Watsonia 16:389–396

    Google Scholar 

  • Schluter D (2001) Ecology and the origin of species. Trends Ecol Evol 16:372–380

    Article  Google Scholar 

  • Shinoda T, Nagao T, Nakayama M, Serizawa H, Koshioka M, Okabe H, Kawai A (2002) Identification of a triterpenoid saponin from a crucifer, Barbarea vulgaris, as a feeding deterrent to the diamondback moth, Plutella xylostella. J Chem Ecol 28:587–599. doi:10.1023/a:1014500330510

    Article  CAS  Google Scholar 

  • Smallegange RC, van Loon JJA, Blatt SE, Harvey JA, Agerbirk N, Dicke M (2007) Flower vs. leaf feeding by Pieris brassicae: Glucosinolate-rich flower tissues are preferred and sustain higher growth rate. J Chem Ecol 33:1831–1844. doi:10.1007/s10886-007-9350-x

    Article  CAS  PubMed Central  Google Scholar 

  • Sork VL, Stowe KA, Hochwender C (1993) Evidence for local adaptation in closely adjacent subpopulations of northern red oak (Quercus rubra L.) expressed as resistance to leaf herbivores. Am Nat 142:928–936. doi:10.2307/2462691

    Article  CAS  Google Scholar 

  • Sparg SG, Light ME, Van Staden J (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243

    Article  CAS  Google Scholar 

  • Tack AJM, Roslin T (2010) Overrun by the neighbors: landscape context affects strength and sign of local adaptation. Ecology 91:2253–2260. doi:10.1890/09-0080.1

    Article  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Toneatto F, Nielsen JK, Ørgaard M, Hauser TP (2010) Genetic and sexual separation between insect resistant and susceptible Barbarea vulgaris plants in Denmark. Mol Ecol 19:3456–3465. doi:10.1111/j.1365-294X.2010.04760.x

    Article  CAS  Google Scholar 

  • van Leur H, Vet L, van der Putten W, van Dam N (2008) Barbarea vulgaris glucosinolate phenotypes differentially affect performance and preference of two different species of lepidopteran herbivores. J Chem Ecol 34:121–131

    Article  PubMed Central  Google Scholar 

  • van Mölken T, Kuzina V, Munk KR, Sundelin T, van Dam NM, Hauser TP (2014) Consequences of combined herbivore feeding and pathogen infection for fitness of Barbarea vulgaris plants. Oecologia 175:589–600. doi:10.1007/s00442-014-2928-4

    Article  Google Scholar 

  • Williams CG (1996) Adaptation and natural selection. Princeton University Press, Princeton

    Google Scholar 

  • Zhang XH, Liu T, Wei XC, Qiu Y, Song JP, Wang HP, Shen D, Agerbirk N, Li XX (2015) Expression patterns, molecular markers and genetic diversity of insect-susceptible and resistant Barbarea genotypes by comparative transcriptome analysis. BMC Genom 16:486. doi:10.1186/s12864-015-1609-y

    Article  Google Scholar 

  • Züst T, Heichinger C, Grossniklaus U, Harrington R, Kliebenstein DJ, Turnbull LA (2012) Natural enemies drive geographic variation in plant defenses. Science 338:116–119. doi:10.1126/science.1226397

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to L. Christoffersen and T. R. Jørgensen, P. Buch Jensen, E. Juhl (I/S Hedeland), N. O. Lundstedt (Dønnerup Gods) and M. Bornø Clausen (Naturstyrelsen) for permission to conduct our experiments on their properties. We thank J. K. Nielsen for help with selection of experimental sites and S. Christensen, L. Debaut-Henocque and K. Rysbjerg Munk for practical work. This study was supported by the Danish Agency for Science, Technology and Innovation (Grant No. 274-08-0462) and a PhD stipend to CH from University of Copenhagen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thure P. Hauser.

Additional information

Communicated by Lori Biederman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heimes, C., Agerbirk, N., Sørensen, H. et al. Ecotypic differentiation of two sympatric chemotypes of Barbarea vulgaris (Brassicaceae) with different biotic resistances. Plant Ecol 217, 1055–1068 (2016). https://doi.org/10.1007/s11258-016-0631-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-016-0631-8

Keywords

Navigation