Skip to main content

Advertisement

Log in

Patterns of phenotypic trait variation in two temperate forest herbs along a broad climatic gradient

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Phenotypic trait variation plays a major role in the response of plants to global environmental change, particularly in species with low migration capabilities and recruitment success. However, little is known about the variation of functional traits within populations and about differences in this variation on larger spatial scales. In a first approach, we therefore related trait expression to climate and local environmental conditions, studying two temperate forest herbs, Milium effusum and Stachys sylvatica, along a ~1800–2500 km latitudinal gradient. Within each of 9–10 regions in six European countries, we collected data from six populations of each species and recorded several variables in each region (temperature, precipitation) and population (light availability, soil parameters). For each plant, we measured height, leaf area, specific leaf area, seed mass and the number of seeds and examined environmental effects on within-population trait variation as well as on trait means. Most importantly, trait variation differed both between and within populations. Species, however, differed in their response. Intrapopulation variation in Milium was consistently positively affected by higher mean temperatures and precipitation as well as by more fertile local soil conditions, suggesting that more productive conditions may select for larger phenotypic variation. In Stachys, particularly light availability positively influenced trait variation, whereas local soil conditions had no consistent effects. Generally, our study emphasises that intra-population variation may differ considerably across larger scales—due to phenotypic plasticity and/or underlying genetic diversity—possibly affecting species response to global environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abasse T, Weber JC, Katkore B, Boureima M, Larwanou M, Kalinganire A (2011) Morphological variation in Balanites aegyptiaca fruits and seeds within and among parkland agroforests in eastern Niger. Agrofor Syst 81:57–66

    Article  Google Scholar 

  • Albert CH (2015) Intraspecific trait variability matters. J Veg Sci 26:7–8

    Article  Google Scholar 

  • Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010) Intraspecific functional variability: extent, structure and sources of variation. J Ecol 98:604–613

    Article  Google Scholar 

  • Alpert P, Simms EL (2002) The relative advantages of plasticity and fixity in different environments: when is it good for a plant to adjust? Evol Ecol 16:285–297

    Article  Google Scholar 

  • Baeten L, Hermy M, Verheyen K (2009) Environmental limitation contributes to the differential colonization capacity of two forest herbs. J Veg Sci 20:209–223

    Article  Google Scholar 

  • Baeten L, Vanhellemont M, De Frenne P, De Schrijver A, Hermy M, Verheyen K (2010) Plasticity in response to phosphorus and light availability in four forest herbs. Oecologia 163:1021–1032

    Article  PubMed  Google Scholar 

  • Baythavong BS (2011) Linking the spatial scale of environmental variation and the evolution of phenotypic plasticity: selection favors adaptive plasticity in fine-grained environments. Am Nat 178:75–87

    Article  PubMed  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed Central  PubMed  Google Scholar 

  • Benito Garzón M, Alía R, Robson TM, Zavala MA (2011) Intra-specific variability and plasticity influence potential tree species distributions under climate change. Global Ecol Biogeogr 20:766–778

    Article  Google Scholar 

  • Byars SG, Papst W, Hoffmann AA (2007) Local adaptation and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient. Evolution 61:2925–2941

    Article  PubMed  Google Scholar 

  • Carlucci MB, Vanderlei JD, Pillar VD, Duarte LDS (2015) Between- and within-species trait variability and the assembly of sapling communities in forest patches. J Veg Sci 26:21–31

    Article  Google Scholar 

  • Chandler TJ, Gregory S (1976) The climate of the British Isles. Longmans Group, London and New York

    Google Scholar 

  • Chapin FS (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260

    Article  CAS  Google Scholar 

  • Cochrane A, Yates CJ, Hoyle GL, Nicotra AB (2014) Will among-population variation in seed traits improve the chance of species persistence under climate change? Global Ecol Biogeogr 24:12–24

    Article  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • De Frenne P, Kolb A, Verheyen K, Brunet J, Chabrerie O, Decocq G, Diekmann M, Eriksson O, Heinken T, Hermy M, Jõgar Ü, Stanton S, Quataert P, Zindel R, Zobel M, Graae BJ (2009) Unravelling the effects of temperature, latitude and local environment on the reproduction of forest herbs. Global Ecol Biogeogr 18:641–651

    Article  Google Scholar 

  • De Frenne P, Graae BJ, Kolb A, Shevtsova A, Baeten L, Brunet J, Chabrerie O, Cousins SAO, Decocq G, Dhondt R, Diekmann M, Gruwez R, Heinken T, Hermy M, Öster M, Saguez R, Stanton S, Tack W, Vanhellemont M, Verheyen K (2011) An intraspecific application of the leaf-height-seed ecology strategy scheme to forest herbs along a latitudinal gradient. Ecography 34:132–140

    Article  Google Scholar 

  • Díaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122

    Article  Google Scholar 

  • Elemans M (2004) Light, nutrients and the growth of herbaceous forest species. Acta Oecol 26:197–202

    Article  Google Scholar 

  • Fajardo A, Piper F (2011) Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile. New Phytol 189:259–271

    Article  PubMed  Google Scholar 

  • Gienapp P, Teplitsky C, Alho JS, Mills JA, Merilä J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178

    Article  CAS  PubMed  Google Scholar 

  • Graae BJ (2002) The role of epizoochorous seed dispersal of forest plant species in a fragmented landscape. Seed Sci Res 12:113–121

    Article  Google Scholar 

  • Graae BJ, Verheyen K, Kolb A, Van Der Veken S, Heinken T, Chabrerie O, Diekmann M, Valtinat K, Zindel R, Karlsson E, Ström L, Decocq G, Hermy M, Baskin CC (2009) Germination requirements and seed mass of slow- and fast-colonizing temperate forest herbs along a latitudinal gradient. Ecoscience 16:248–257

    Article  Google Scholar 

  • Grassein F, Till-Bottraud I, Lavorel S (2010) Plant resource-use strategies: the importance of phenotypic plasticity in response to a productivity gradient for two subalpine species. Ann Bot 106:637–645

    Article  PubMed Central  PubMed  Google Scholar 

  • Grime JP, Crick JC, Rincon JE (1986) The ecological significance of plasticity. In: Jennings DH, Trewavas AJ (eds) Plasticity in plants. Cambridge University Press, Cambridge, pp 5–29

    Google Scholar 

  • Grime JP, Hodgson JC, Hunt R (1988) Comparative plant ecology. A functional approach to common British species. Unwin Hyman, London

    Google Scholar 

  • Hermy M, Honnay O, Firbank L, Grashof-Bokdam C, Lawesson JE (1999) An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conserv 91:9–22

    Article  Google Scholar 

  • Hof C, Levinsky I, Araújo MB, Rahbek C (2011) Rethinking species’ ability to cope with rapid climate change. Global Change Biol 17:2987–2990

    Article  Google Scholar 

  • Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623

    Article  PubMed  Google Scholar 

  • Hultén E, Fries M (1986) Atlas of the north European vascular plants: north of the tropic of cancer I–III. Koeltz Scientific Books, Königstein

    Google Scholar 

  • IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of working groups I, II an III to the Fifth Assessment Report. Intergovernmental Panel on Climate Change, Geneva

  • Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Article  Google Scholar 

  • Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010) Intraspecific variability and trait-based community assembly. J Ecol 98:1134–1140

    Article  Google Scholar 

  • Kattge J, Díaz S, Lavorel S et al (2011) TRY—a global database of plant traits. Global Change Biol 17:2905–2935

    Article  Google Scholar 

  • Kumordzi BB, Wardle DA, Freschet GT (2015) Plant assemblages do not respond homogenously to local variation in environmental conditions: functional responses differ with species identity and abundance. J Veg Sci 26:32–45

    Article  Google Scholar 

  • Lemke IH, Kolb A, Diekmann M (2012) Region and site conditions affect phenotypic trait variation in five forest herbs. Acta Oecol 39:18–24

    Article  Google Scholar 

  • Messier J, McGill BJ, Lechowicz MJ (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecol Lett 13:838–848

    Article  PubMed  Google Scholar 

  • Mitchell RM, Bakker JD (2013) Quantifying and comparing intraspecific functional trait variability: a case study with Hypochaeris radicata. Funct Ecol 28:258–269

    Article  Google Scholar 

  • Moreira B, Tavsanoglu Ç, Pausas JG (2012) Local versus regional intraspecific variability in regeneration traits. Oecologia 168:671–677

    Article  CAS  PubMed  Google Scholar 

  • Moustakas A, Evans ER (2013) Integrating evolution into ecological modelling: accommodating phenotypic changes in agent based models. PLoS ONE 8:e71125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692

    Article  CAS  PubMed  Google Scholar 

  • Paletto A, Tosi V (2009) Forest canopy cover and canopy closure: comparison of assessment techniques. Eur J For Res 129:265–272

    Article  Google Scholar 

  • Pannek A, Ewald J, Diekmann M (2013) Resource-based determinants of range sizes of forest vascular plants in Germany. Global Ecol Biogeogr 22:1019–1028

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Core Team (2009) nlme: linear and nonlinear mixed effect models. R Package Version 3:1–96

    Google Scholar 

  • Poorter H, Niinemets Ü, Walter A, Fiorani F, Schurr U (2010) A method to construct dose-response curves for a wide range of environmental factors and plant traits by means of a meta-analysis of phenotypic data. J Exp Bot 61:2043–2055

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe DA (1968) An ecological account of atlantic briophytes in the British Isles. New Phytol 67:365–439

    Article  Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna (http://www.R-project.org/)

  • Schlichting CD (1986) The evolution of phenotypic plasticity in plants. Ann Rev Ecol Syst 17:667–693

    Article  Google Scholar 

  • Shipley B (2006) Net assimilation rate, specific leaf area and leaf mass ratio: which is mostly correlated with relative growth rate? A meta-analysis. Funct Ecol 20:565–574

    Article  Google Scholar 

  • Siefert A, Fridley JD, Ritchie ME (2014) Community functional responses to soil and climate at multiple spatial scales: when does intraspecific variation matter? PLoS ONE 9:e111189

    Article  PubMed Central  PubMed  Google Scholar 

  • Svenning J-C, Normand S, Skov F (2008) Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography 31:316–326

    Article  Google Scholar 

  • Taylor K, Rowland P (2010) Biological Flora of the British Isles: Stachys sylvatica L. J Ecol 98:1476–1489

    Article  Google Scholar 

  • Thuiller W, Albert CH, Dubuis A, Randin C, Guisan A (2010) Variation in habitat suitability does not always relate to variation in species’ plant functional traits. Biol Lett 6:120–123

    Article  PubMed Central  PubMed  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  • Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc Lond B 270:467–473

    Article  CAS  Google Scholar 

  • Tyler T (2002) Geographic structure of genetic variation in the widespread woodland grass Milium effusum L. A comparison between two regions with contrasting history and geomorphology. Genome 45:1248–1256

    Article  PubMed  Google Scholar 

  • Valladares F, Gianoli E, Gómez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytol 176:749–763

    Article  PubMed  Google Scholar 

  • Vázquez DP, Stevens RD (2004) The latitudinal gradient in niche breadth: concepts and evidence. Am Nat 164:E1–E19

    Article  PubMed  Google Scholar 

  • Violle C, Enquist BJ, McGill BJ, Albert CH, Hulshof C, Jung V, Messier J (2012) The return of variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–252

    Article  PubMed  Google Scholar 

  • Walsh C, Mac Nally R (2008) Hier. part: hierarchical partitioning. R package version 1.0-3

  • Walther G-R (2010) Community and ecosystem responses to recent climate change. Phil Trans R Soc B 365:2019–2024

    Article  PubMed Central  PubMed  Google Scholar 

  • Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620

    Article  Google Scholar 

  • Weiner J, Thomas SC (1986) Size variability and competition in plant monocultures. Oikos 47:211–222

    Article  Google Scholar 

  • Willis KJ (1996) Where did all the flowers go? The fate of temperate European flora during glacial periods. Endeavour 20:110–114

    Article  Google Scholar 

  • Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005) Modulation of leaf economic traits and trait relationships by climate. Global Ecol Biogeogr 14:411–421

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Research Foundation − Flanders (FWO) for funding the Scientific Research network ‘FLEUR’ (http://www.fleur.ugent.be). We also thank Marion Ahlbrecht, Vincenzo Gonnelli, Tor Ivar Hansen, Emma Holmström, Astrid Karus, Sigrid Lindmo, Justine Louvel and Antonio Zoccola for field or lab assistance. Climate data of the Estonian sites were provided by courtesy of the Estonian Meteorological and Hydrological Institute. This paper was written while P.D.F. held a post-doctoral fellowship from the FWO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isgard H. Lemke.

Additional information

Communicated by Thomas Abeli.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemke, I.H., Kolb, A., Graae, B.J. et al. Patterns of phenotypic trait variation in two temperate forest herbs along a broad climatic gradient. Plant Ecol 216, 1523–1536 (2015). https://doi.org/10.1007/s11258-015-0534-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-015-0534-0

Keywords

Navigation