Skip to main content

Advertisement

Log in

Heterogeneity of the inland water–land palm ecotones (morichals) in the Orinoco lowlands, South America

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

We analyzed the distributional pattern of species and environmental gradients across inland water–land palm ecotones (morichals) of the Orinoco lowlands to increase comprehension of the nature of ecotone heterogeneity. A total of 91 species (53 genera and 45 families) with aboveground phytomass > 0.1 g dry mass were recorded. Detrented canonical correspondence analysis (DCCA) indicated that vegetation phytomass was related strongly to soil properties, including gradients of silt (14.5–4.7%), exchangeable Al (1.05–3.10 cmole kg−1), K (0.03–0.30 cmole kg−1), Na (0.01–0.08 cmole kg−1), Mg (0.03–0.54 cmole kg−1) concentrations, pH (3.7–5.0 units), and soil organic matter. Cluster analysis allowed the definition of four types of ecotones on the basis of hydrogeomorphic processes. The first major group (1) encompassing the sites from Venezuelan lowlands (i.e., 3V, 4V, 5V, 6V, and 7V) was related to less acidic soils with high organic matter content. The second group (II) from Eastern Colombian llanos (i.e., sites 8C, 9C, 11C, 12C, 13C, 14C, and 15C) was located in acidic soils (3.9–4.5 units) with high Mg concentration. The third group (III) (i.e., sites IV and 10C) was located in soils with high Na content, whereas the fourth group (IV) (i.e., site 2V) was characterized by species growing in soils with low exchangeable aluminum. The results evidenced the interactive role of valley constraint, landforms, hydrological regime, and soil feature in structuring the plant community. Biogeographic and floristic considerations were also taken into account to explain differences in species composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aristeguieta L (1968) Consideraciones sobre la flor de los morichales llaneros al norte del Orinoco, Venezuela. Acta Bot Venez 3:3–22

    Google Scholar 

  • Askew GP, Moffat DJ, Montgomery RF, Searl PL (1970) Soil landscapes in north eastern Mato Grosso. Geogr J 136:211–227

    Article  Google Scholar 

  • Askew GP, Moffat DJ, Montgomery RF, Searl PL (1971) Soil and soil moisture as factor influencing the distribution of the vegetation of the Serra do Roncadous Mato Grosso. In: Ferri MG (ed) III Simposium sobre o cerrado. Universidade de Sao Paulo, Sao Paulo

    Google Scholar 

  • Beard JS (1953) The savanna vegetation of northern tropical America. Ecol Monogr 23:149–215

    Article  Google Scholar 

  • Beard JS (1955) The classification of tropical American vegetation types. Ecology 36:89–100

    Article  Google Scholar 

  • Berrio JC, Hooghiemstra H, Behling H, Botero P, van der Borg K (2002) Late quaternary savanna history of the Colombian Llanos Orientales from Lagunas Chenevo and Mozambique: a transect synthesis. Holocene 12:35–48

    Google Scholar 

  • Bremner JJ (1965) Total nitrogen. In: Black C (ed) Methods of soil analysis. American Society of Agronomy, Wisconsin, pp 1149–1178

    Google Scholar 

  • Buol SW, Hole FD, McCracken RJ (1993) Soil genesis and classification, 3rd edn. Iowa State University Press, Ames

    Google Scholar 

  • Burrough PA (1983) Multiscale sources of spatial variation in soil. I. Application of fractal concepts to nested levels of variation. J Soil Sci 34:577–597

    Article  Google Scholar 

  • Catterall CP (1993) The importance of riparian zones to terrestrial wildlife. In: Bunn SE, Pusey BJ, Price P (eds) Ecology and management riparian zones in Australia, pp. 41–52. Land and Water Research and Development Corporation occasional paper series no. 05/93. LWRRDC, Canberra and Centre for Catchment and In-stream Research Griffith University

  • Catterall CP, Piper SD, Bunn SE, Arthur JM (2001) Flora and fauna assemblages vary with local topography in a subtropical eucalypt forest. Austral Ecol 26:56–69

    Article  Google Scholar 

  • Clark I (1979) Practical geostatistics. Applied Science Publishers, London

    Google Scholar 

  • Cochrane TT, Sanchez LG, de Azevedo LG, Porras JA, Garver CL (eds) (1985) Land in tropical America, vol 3. CIAT, EMBRAPA-CPAC, Brasilia

    Google Scholar 

  • Collins SL, Riser PG, Rice EL (1981) Ordination and classification of mature bottomland forest in north central Oklahoma. Bull Torrey Bot Club 108:152–165

    Article  Google Scholar 

  • Day PR (1965) Particles fractionation and particle size analysis. In: Black C (ed) Methods of soil analysis. American Society of Agronomy, Wisconsin

    Google Scholar 

  • Delcourt HR, Delcourt PA (1991) Quaternary ecology. A paleoecological perspective. Chapman and Hall, New York

    Google Scholar 

  • Dick DA, Gilliam FS (2007) Spatial heterogeneity and dependence of soils and herbaceous plant communities in adjacent seasonal wetland and pasture sites. Wetlands 27:951–963

    Article  Google Scholar 

  • Dollar KE, Pallardy SG, Garret HG (1992) Composition and environment of floodplain forest of northern Missouri. Can J For Res 22:1343–1350

    Article  Google Scholar 

  • Eamus D, Farrer SL (2006) Groundwater-dependent ecosystems. Special issue. Aust J Bot 54:91–237

    Article  Google Scholar 

  • Eiten G (1983) Classificacao da vegetacao do Brasil. CNPq, Coordenacao Editorial Brasilia, Brasilia

    Google Scholar 

  • Felfili JM (1994) Growth, recruitment and mortality in the Gama gallery forest in central Brazil over a six-year period (1985–1991). J Trop Ecol 11:67–83

    Article  Google Scholar 

  • Gonzalez V (1987) Los morichales de los llanos orientales: Un Enfoque Ecológico. Ediciones Corpoven, Caracas

    Google Scholar 

  • Haaser R, Beck SG (1989) Structure and composition of savanna vegetation in northern Bolivia: a preliminary report. Brittonia 41:80–100

    Article  Google Scholar 

  • Hardin ED, Lewis KP, Wistendahl WA (1989) Gradient analysis of floodplain forests along three rivers in unglaciated Ohio. Bull Torrey Bot Club 116:258–264

    Article  Google Scholar 

  • Hedberg H, Pyre A (1944) Stratigraphy of north-eastern Venezuela. Am Assoc Pet Geol B 28:1–28

    Google Scholar 

  • Hill MO (1979) TWINSPAN: a Fortran program for arranging multivariate data in an ordered two-way table by classification of the individual and attributer. Cornell University, New York

    Google Scholar 

  • Hope AC (1968) A simplified Monte Carlo significance test procedure. J R Stat Soc B 30:582–589

    Google Scholar 

  • Hupp CR (1992) Riparian vegetation recovery patterns following stream channelization: a geomorphic perspective. Ecology 73:1209–1226

    Article  Google Scholar 

  • Hupp CR, Osterkamp WR (1996) Riparian vegetation and fluvial geomorphic processes. Geomorphology 14:277–295

    Article  Google Scholar 

  • Jackson ML (1958) Soil chemical analysis. Prentice Hall, New York

    Google Scholar 

  • Kalliola R, Puhakka M (1988) River dynamics vegetation mosaicism: a case study of the River Kamajohka, northernmost Finland. J Biogeogr 15:703–719

    Article  Google Scholar 

  • Keay RWJ (1959) An outline of Nigerian vegetation. Federal Government Printer, Lagos

    Google Scholar 

  • Kent M, Coker P (1992) Vegetation description and analysis. A practical approach. CRC Press, Boca Raton, p 363

    Google Scholar 

  • Levine JM (2000) Complex interactions in a streamside plant community. Ecology 81:3431–3444

    Article  Google Scholar 

  • Ludwig JA, Reynolds JF (1988) Statistical ecology. A primer on methods and computing. Wiley, New York

    Google Scholar 

  • Lyon J, Sager C (2002) Correspondence analysis of functional groups in a riparian landscape. Plant Ecol 164:171–183

    Article  Google Scholar 

  • Malagon D (1987) Aspectos genéticos y taxonómicos de algunos suelos de Terecay (Vichada), Colombia. In: San José JJ, Montes RA (eds) La capacidad bioproductiva de sabanas. Centro Internacional de Ecología Tropical (CIET/UNESCO), Caracas, Venezuela, pp 108–204 (Diciembre 1987)

    Google Scholar 

  • Malanson G (1993) Riparian landscapes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Martin J, Andre B (1993) Riverine wetland vegetation: importance of small-scale and large-scale environmental variation. J Veg Sci 4:609–620

    Article  Google Scholar 

  • Mazorra MA, San José JJ, Montes RA, García-Miragaya J, Haridasan M (1987) Aluminum concentration in the biomass of native species of the morichals (swamp palm community) at the Orinoco llanos, Venezuela. Plant Soil 102:275–277

    Article  CAS  Google Scholar 

  • McGarigal K, McComb WC (1992) Streamside versus upslope breeding bird communities in the central Oregon coast range. J Wildl Manag 56:10–23

    Article  Google Scholar 

  • Meave J, Kellman M (1994) Maintenance of rain forest diversity in riparian forest of tropical savannas: implications for species conservation during Pleistocene drought. J Biogeogr 21:121–135

    Article  Google Scholar 

  • Montes R, San José JJ (1995) Vegetation and soil analysis of topo-sequences in the Orinoco Llanos. Flora 190:1–33

    Google Scholar 

  • Montgomery DR, Butfington JM (1997) Channel reach morphology in mountain drainage basins. Geol Soc Am Bull 109:596–611

    Article  Google Scholar 

  • Montgomery D, Peck E (1982) Introduction to linear regression analysis. Wiley, New York

    Google Scholar 

  • Muller J (1970) Palynological evidence on early differentiation of angiosperms. Biol Rev Camb Philos Soc 45:417–450

    Article  Google Scholar 

  • Naiman RJ, Decamps H, McClain ME (2005) Riparia: ecology, conservation and management of streamside communities. Elsevier Academic Press, San Diego

    Google Scholar 

  • Nilsson C, Ekblad A, Dynesius M, Backe S, Gradfjell M, Iberg B (1994) A comparison of species richness and traits of riparian plant between a main river channel and its tributaries. J Ecol 82:281–295

    Article  Google Scholar 

  • Oliveira-Filho AT, Martins FR (1986) Distribucao, caracterizacao da regiao da Salgadeira, na Chapada dos Guimaraes (MT). Rev Bras Bot 9:207–223

    Google Scholar 

  • Oliveira-Filho A, Ratter J (1995) A study of the origin of central Brazilian forest by the analysis of plant distribution patterns. Edinb J Bot 52:141–194

    Article  Google Scholar 

  • Oliveira-Filho AT, Ratter J, Shepherd GJ (1990) Floristic composition and community structure of a central Brazil gallery forest. Flora 184:103–117

    Google Scholar 

  • Oliveira-Filho AT, Vilela EA, Carvalho DA, Gavilanes ML (1994) Effects of soil and topography on the distribution of tree species in a tropical riverine forest in south-eastern Brazil. J Trop Ecol 10:483–508

    Article  Google Scholar 

  • Oliveira-Filho AT, Curi N, Vilela EA, Carvalho DA (1997) Tree species distribution along soil catenas in a riverside semideciduous forest in south-eastern Brazil. Flora 192:47–64

    Google Scholar 

  • Olsen SR, Dean LA (1965) Phosphorous. In: Black C (ed) Methods of soil analysis. American Society of Agronomy, Wisconsin, pp 1035–1048

    Google Scholar 

  • Palmer MW (1988) Fractal geometry: a tool for describing spatial patterns of plant communities. Vegetation 75:91–102

    Article  Google Scholar 

  • Pérez D (1981) Comportamiento hidrogeológico y sensibilidad ambiental de los morichales como sistemas fluviales. MARNR, Caracas

    Google Scholar 

  • Pla Sentis I (1977) Metodología para caracterización física con fines de diagnóstico de problemas de manejo y conservación de suelos en condiciones tropicales. Curso de Post-grado en ciencias del suelo. Facultad de Agronomía. Universidad Central de Venezuela. Maracay, Venezuela

  • Prance GT (1992) The phytogeography of Savanna species of neotropical Chrysobalanaceae. In: Furley PA, Proctor J, Ratter JA (eds) Nature and dynamics of forest-savanna boundaries. Chapman and Hall, New York, pp 295–330

    Google Scholar 

  • Robertson MD, MacKenzie PA, Elliot LF (1984) Gradient analysis and classification of the woody vegetation for four sites in southern Illinois and adjacent Missouri. Vegetation 38:87–104

    Article  Google Scholar 

  • Rochow JJ (1972) A vegetational description of a mid-Missouri forest using gradient analysis techniques. Am Midl Nat 87:377–398

    Article  Google Scholar 

  • Rot BW, Naiman RJ, Bilby RE (2000) Stream channel configuration, landform and riparian forest structure in the Cascade Mountains, Washington. Can J Fish Aquat Sci 57:699–707

    Article  Google Scholar 

  • San José J, Garcia-Miragaya J (1979) Contenido de nutrientes en el suelo y en la fitomasa de comunidades de la sabana de Trachypogon, Calabozo, Venezuela. Bol Soc Ven Cienc Nat 34:113–122

    Google Scholar 

  • San José JJ, Montes R (1991) Regional interpretation of environmental gradients which influence Trachypogon savannas in the Orinoco Llanos. Vegetation 95:21–32

    Article  Google Scholar 

  • San José JJ, Montes RA, Mazorra MA (1998) The nature of savanna heterogeneity in the Orinoco Basin. Glob Ecol Biogeogr Lett 7:441–455

    Article  Google Scholar 

  • San José JJ, Meirelles ML, Bracho R, Nikonova N (2001) A comparative analysis of the flooding and fire effects on the energy exchange in a wetland community (morichal) of the Orinoco Llanos. J Hydrol 242:228–254

    Article  Google Scholar 

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 38:913–920

    Google Scholar 

  • Strahler AN (1964) Quantitative geomorphology of drainage basins and channel networks. Section 4-2. In: Chow VT (ed) Handbook of applied hydrology. McGraw-Hill, New York

    Google Scholar 

  • Technicon Auto-Analyzer II (1978) Individual/simultaneous determination of nitrogen and/or phosphorous in acid digest. In: Industrial method, vol 329–374. W/B. Technicon Industrial Systems/Taurytown, New York, pp 1–19

  • Ter Braak CJ (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Google Scholar 

  • Ter Braak CJR (1988) CANOCO: a Fortran program for canonical community ordination by [partial] [detrended] [canonical] correspondence analysis, principal component analysis and redundancy analysis (version 2.1). Agricultural Mathematics Group, Wageningen

    Google Scholar 

  • Ter Braak CJR, Prentice I (1988) A theory of gradient analysis. Adv Ecol Res 18:271–317

    Article  Google Scholar 

  • Teran FA, Duno R (1988) Caracterización fisionómica y florística de los morichales de la cuenca del rio Yuruani. Tesis, Universidad Simón Bolívar, Sartenejas, Venezuela

    Google Scholar 

  • van der Hammen T (1992) Historia ecología y vegetación. Corporación Araracuara, Santafé de Bogotá

    Google Scholar 

  • Veneklaas EJ, Fajardo A, Obregón S, Lozano J (2005) Gallery forest types and their environmental correlates in a Colombian savanna landscape. Ecography 28:236–252

    Article  Google Scholar 

  • Wharton CH, Kitchens WM, Pendleton EC, Sipe TW (1982) The ecology of bottomland hardwood swamps of the Southeast. A community profile. U.S. Fish and Wildlife Service Technical Report, FWS/OBS/81-37, pp 1–33

  • Whittaker RH (1975) Communities and ecosystems. MacMillan, New York

    Google Scholar 

  • Yuan TL, Fiskell JG (1959) Aluminum studies. 2. The extraction of aluminum from some Florida soils. Soil Sci Soc Am Proc 23:202–206

    CAS  Google Scholar 

Download references

Acknowledgments

This study has been conducted within the Savanna Bioproductivity MAB (UNESCO) project of IVIC and partially sponsored by the Man and Biosphere Programme (MAB/UNESCO). The identification of the botanical material was made or revised by Dr. Gerrit Davidse from Missouri Botanical Garden. We appreciate the skillful support of Prof. Daniel Bailey (Simón Bolívar University), Dirk Thielen, Carmen Buendía and Meimalín Moreno of Ecology Center—IVIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José San-José.

Rights and permissions

Reprints and permissions

About this article

Cite this article

San-José, J., Montes, R., Mazorra, M.A. et al. Heterogeneity of the inland water–land palm ecotones (morichals) in the Orinoco lowlands, South America. Plant Ecol 208, 259–269 (2010). https://doi.org/10.1007/s11258-009-9703-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-009-9703-3

Keywords

Navigation