Skip to main content

Advertisement

Log in

Variation in leaf area index and stand leaf mass of European beech across gradients of soil acidity and precipitation

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Leaf area index (LAI, the one-sided foliage area per unit ground surface area) is a key determinant of plant productivity which has a large influence on water and energy exchange between vegetation and the atmosphere. The variation in forest LAI across landscapes and environmental gradients and its causes are not sufficiently understood. We measured the LAI of European beech (Fagus sylvatica) by litter trapping in 23 closed, mature stands across gradients of rainfall and soil acidity or fertility. With a mean LAI of 7.4 m2 m−2 (minimum: 5.6, maximum: 9.5 m2  m−2), beech stands maintained a comparably high leaf area index with relatively small variation along steep environmental gradients. Contrary to expectation, decreasing water availability (rainfall gradient from 1030 to 520 mm yr−1) or increasing soil acidity (pH 3–7) had no significant effect on LAI. Stand leaf mass (M l) increased slightly with soil fertility (C/N ratio, base saturation). We regressed parameters of site water availability (rainfall), soil fertility or acidity (pH, base saturation, C/N ratio, exchangeable Mg and Al content), and stand structure (stand age and stem density) against LAI and M l in order to detect environmental controls of stand leaf area. Stand age was the most influential factor for both LAI and M l (negative relationship). Stem density and the base saturation of the soil affected M l significantly, but had a weak influence on LAI. We conclude that the leaf area index of beech is mainly under control of age-related physiological factors, whereas the influence of soil chemistry and rainfall is comparably low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrektson A., Aronsson A. and Tamm C.O. 1977. The effect of fertilization on primary production and nutrient cycling in the forest ecosystems. Silva Fennica 11: 233–239

    Google Scholar 

  • Ares A. and Fownes J.H. 1999. Water supply regulates structure, productivity, and water use efficiency of Acacia koa forest in Hawaii. Oecologia 121: 458–466

    Article  Google Scholar 

  • Battaglia M., Cherry M.L., Beadle C.L., Sands P.J. and Hingston A. 1998. Prediction of leaf area index in Eucalyptus plantations: effects of water stress and temperature. Tree Physiol. 18: 521–528

    PubMed  Google Scholar 

  • Bolstad P.Y., Vose J.M. and McNulty S.G. 2000. Forest productivity, leaf area, and terrain in southern Appalachian deciduous forests. For. Sci. 47: 419–427

    Google Scholar 

  • Bray J.R. and Gorham E. 1964. Litter production in forests of the world. Adv. Ecol. Res. 2: 101–157

    Article  Google Scholar 

  • Burton A.J., Pregitzer K.S. and Reed D.D. 1991. Leaf area and foliar biomass relationships in northern hardwood forests located along an 800 km acid deposition gradient. For. Sci. 37: 1011–1059

    Google Scholar 

  • Chalupa V. 1961. Beitrag zur Kenntnis der Blattproduktion der Buchen- und Eichenbestände. Pr Vyzk Ustavu Lesn 23: 35–62

    Google Scholar 

  • Chason J.W., Baldocchi D.D., Huston M.A. 1991. A comparison of direct and indirect methods for estimating forest canopy leaf area. Agric. For. Meteorol. 57: 107–128

    Article  Google Scholar 

  • Cutini A., Matteucci G. and Mugnozza G.S. 1998. Estimation of leaf area index with the Li-Cor LAI 2000 in deciduous forests. For. Ecol. Manage. 105: 55–65

    Article  Google Scholar 

  • Danckelmann B. 1887. Streuertragstafel für Buchen- und Fichtenhochwaldungen. Zeitschrift Forst- Jagdwesen 19: 577–587

    Google Scholar 

  • Dean T.J. and Long J.N. 1988. Bias in leaf area-sapwood area ratios and its impact on growth analysis in Pinus contorta. Trees 2: 104–112

    Article  Google Scholar 

  • DeAngelis D.L., Gardner R.H. and Shugart H.H. 1981. Productivity of forest ecosystems studied during the IBP. In: Reichle D.E. (ed.), Dynamic Properties of Forest Ecosystems. Int Biol Progr No. 23. Cambridge Univ. Press, London, pp. 567–672

  • Dufrene E. and Bréda N. 1995. Estimation of deciduous forest leaf area index using direct and indirect methods. Oecologia 104: 156–162

    Article  Google Scholar 

  • Ebermayer E. 1876. Die gesamte Lehre der Waldstreu mit Rücksicht auf die chemische Statik des Waldbaues, Springer, Berlin

    Google Scholar 

  • Ellenberg H. 1996. Vegetation Mitteleuropas mit den Alpen, 5th ed. Ulmer, Stuttgart

    Google Scholar 

  • Eschrich W., Burchardt R. and Essiamah S. 1989. The induction of sun and shade leaves of the European beech (Fagus sylvatica L.): anatomical studies. Trees 3: 1–10

    Article  Google Scholar 

  • Gholz H.L. 1982. Environmental limits on aboveground net primary production, leaf area, and biomass in vegetation zones of the Pacific Northwest. Ecology 63: 469–481

    Article  Google Scholar 

  • Gholz H.L., Fitz F.K. and Waring R.H. 1976. Leaf area difference associated with old-growth forest communities in the western Oregon Cascades. Can. J. For. Res. 6: 49–57

    Google Scholar 

  • Gower S.T., Vogt K.A. and Grier C.C. 1992. Carbon dynamics of Rocky Mountain Douglas-fir: influence of water and nutrient availability. Ecol. Monogr. 62: 43–65

    Article  Google Scholar 

  • Gower S.T., Kucharik C.J. and Norman J.M. 1999. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial vegetation. Remote Sens. Environ. 70: 29–51

    Article  Google Scholar 

  • Grier C.C. and Running S.W. 1977. Leaf area of mature northwestern coniferous forests: relation to site water balance. Ecology 58: 893–899

    Article  Google Scholar 

  • Hagemeier M. 2002. Funktionale Kronenarchitektur mitteleuropäischer Baumarten am Beispiel von Hängebirke, Waldkiefer, Traubeneiche, Hainbuche, Winterlinde und Rotbuche. Diss. Bot. 361: 1–154

    Google Scholar 

  • Harrington R.A., Fownes J.H., Meinzer F.C. and Scowcroft P.G. 1995. Forest growth along a rainfall gradient in Hawaii: Acacia koa stand structure, productivity, foliar nutrients, and water- and nutrient-use efficiencies. Oecologia 102: 277–284

    Article  Google Scholar 

  • Harrington R.A., Fownes J.H. and Vitousek P.M. 2001. Production and resource use efficiencies in N- and P-limited tropical forests: a comparison of responses to long-term fertilization. Ecosystems 4: 646–657

    Article  CAS  Google Scholar 

  • Hebert M.T. and Jack S.B. 1998. Leaf area index and site water balance of loblolly pine (Pinus taeda L.) across a precipitation gradient in East Texas. For. Ecol. Manage. 105: 273–282

    Article  Google Scholar 

  • Heller H. 1971. Estimation of photosynthetically active leaf area in forests: methods for beech leaves. In: Ellenberg H. (eds), Integrated Experimental Ecology: methods and Results of Ecosystem Research in the German Solling Project. Springer, Berlin, pp. 45–47

    Google Scholar 

  • Herbert D.A. and Fownes J.H. 1995. Phosphorus limitation of forest leaf area and net primary production on a highly weathered soil. Biogeochemistry 29: 223–235

    Article  CAS  Google Scholar 

  • Herbert D.A. and Fownes J.H. 1999. Forest productivity and efficiency of resource use across a chronosequence of tropical montane soils. Ecosystems 2: 242–254

    Article  CAS  Google Scholar 

  • Hofmann G. and Jenssen M. 1997. Laubmassen und ihre Entwicklung in mitteleuropäischen Rotbuchenwäldern. Beiträge Forstwirtschaft Landschschaftsökologie 31: 97–103

    Google Scholar 

  • Holst T., Hauser S., Kirchgäßner A., Matzarakis A., Mayer H., Schindler D. 2004. Measuring and modelling plant area index in beech stands. Int. J. Biometeorol. 48: 192–201

    Article  PubMed  CAS  Google Scholar 

  • Hsiao T.C., Silk W.K. and Jing J. 1985. Leaf growth and water deficits: biophysical effects. In: Baker NR, Davies WR and Ong CK (eds), Control of Leaf Growth. Soc. Expl. Biol. Sem. Ser. Vol. 27. Cambridge Univ. Press, Cambridge, pp. 239–266

  • Hüttermann A., Ulrich B., Godbold D.L. and Fritz E. 1988. Changes in forest soils and tree vitality as a consequence of acid deposition. Proceed US/FRG Res Symp, Vermont 1987. Northeastern Forest Experiment Station, Broomall, Pennsylvania, pp. 495–504

  • Jaro Z. 1959. The leaf area in some forest types. Erdeszeti Kut 6: 103–110

    Google Scholar 

  • Jarvis P.G. and Leverenz J.W. 1983. Productivity of temperate, deciduous and evergreen forests. In: Lange O.L., Nobel P.S., Osmond C.B. and Ziegler H. (eds), Encycl Plant Physiol New Ser, Physiological Plant Ecology, Vol 12D. Springer, Berlin, pp. 233–280

  • Jose S. and Gillespie A.R. 1997. Leaf area-productivity relationships among mixed-species hardwood forest communities of the Central Hardwood region. For. Sci. 43: 56–64

    Google Scholar 

  • Lambers H., Chapin III F.S. and Pons T.L. 1998. Plant Physiological Ecology, Springer, Berlin

    Google Scholar 

  • Le Dantec V., Dufrene E. and Saugier B. 2000. Interannual and spatial variation in maximum leaf area index of temperate deciduous stands. For. Ecol. Manage. 134: 71–81

    Article  Google Scholar 

  • Long J.N. and Smith F.W. 1990. Determinant of stemwood production in Pinus contorta var. latifolia forest: the influence of site quality and stand structure. J. Appl. Ecol. 27: 847–856

    Article  Google Scholar 

  • Meiwes K.-J., König N., Khanna P.K., Prenzel J. and Ulrich B. 1984. Chemische Untersuchungsverfahren für Mineralböden, Auflagehumus und Wurzeln zur Charakterisierung und Bewertung der Versauerung in Waldböden. Berichte Forschzentrum Waldökosysteme Universität Göttingen 7: 1–67

    Google Scholar 

  • Möller C.M. 1945. Untersuchungen über Laubmenge, Stoffverlust und Stoffproduktion des Waldes. Forstl Forsöksv Danmark 17: 1–287

    Google Scholar 

  • Murach D. and Ulrich B. 1988. Destabilization of forest ecosystems by acid deposition. GeoJournal 17: 253–260

    Article  Google Scholar 

  • Neilson R.P. 1995. A model for predicting continental-scale vegetation distribution and water balance. Ecol. Appl. 5: 362–385

    Article  Google Scholar 

  • Newbould P.J. 1967. Methods of Estimating the Primary Production of Forests. IBP handbook no 2, Willmer Brothers, Birkenhead, UK

    Google Scholar 

  • Nihlgard B. and Lindgren L. 1977. Plant biomass, primary production and bioelements of three mature beech forests in South Sweden. Oikos 28: 95–104

    Article  CAS  Google Scholar 

  • Pierce L.L., Running S.W. and Walker J. 1994. Regional-scale relationships of leaf area index to specific leaf area and leaf nitrogen contents. Ecol. Appl. 4: 313–321

    Article  Google Scholar 

  • Pook E.W. 1986. Canopy dynamics of Eucalyptus maculata Hook. IV Contrasting responses to two severe droughts. Aust. J. Bot. 34: 1–14

    Article  Google Scholar 

  • Prskawetz M. and Lexer M.J. 2000. Evaluierung des LI-COR LAI-2000 zur Ermittlung des Blattflächenindex in Buchenjungbeständen. Allgemeine Forst- u. Jagdzeitung 171: 185–191

    Google Scholar 

  • Running S.W., Nemani R.R., Peterson D.L., Ban L.E., Potts D.F., Pierce L.L. and Spanner M.A. 1989. Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. Ecology 70: 1090–1101

    Article  Google Scholar 

  • Runyon J., Waring R.H., Goward S.N. and Welles J.M. 1994. Environmental limits on net primary production and light-use efficiency across the Oregon transect. Ecol. Appl. 4: 226–237

    Article  Google Scholar 

  • Ryan M.G., Binkley D. and Fownes J.H. 1997. Age-related decline in forest productivity: pattern and process. Adv. Ecol. Res. 27: 213–262

    Article  Google Scholar 

  • Schipka F., Heimann J. and Leuschner Ch. 2005. Regional variation in canopy transpiration of Central European beech forests. Oecologia 143: 260–270

    PubMed  Google Scholar 

  • Shidei T. and Kira T. (eds) 1977. Primary Productivity of Japanese forests, University of Tokyo Press, Tokyo

  • Swank W.T., Swift L.W. and Douglass J.E. 1988. Streamflow changes associated with forest cutting, species conversions and natural disturbances. In: Swank W.T. and Crossley D.A. Jr., (eds), Forest Ecology and Hydrology at Coweeta. Ecol. Stud., Vol. 66. Springer, New York, pp. 297–312

  • Taiz L., Zeiger E. 1998. Plant Physiology, 2nd ed. Sinauer Assoc., Sunderland, Massachusetts

    Google Scholar 

  • Thomas S.C. and Winner W.E. 2000. Leaf area index of an old-growth Douglas-fir forest estimated from direct structural measurements in the canopy. Can. J. For. Res. 30: 1922–1930

    Article  Google Scholar 

  • Van Dijk A. and Bruijnzeel L.A. 2001. Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 1. Model description. J. Hydrol. 247: 230–238

    Google Scholar 

  • Van Praag H.J. and Sougnez-Remy S. 1986. Mesure de l’index foliaire dans une Hetraie et une Pessière des Hautes-Fagnes. Société Royal Botanique Belgique 119: 107–113

    Google Scholar 

  • Vose J.M. and Allen H.L. 1988. Leaf area, stemwood growth and nutrition relationships in loblolly pine. For. Sci. 34: 546–563

    Google Scholar 

  • Whitehead D. and Jarvis P.G. 1981. Coniferous forests and plantations. In: Kozlowski T.T. (ed.), Water Deficits and Plant Growth. Woody Plant Communities, Vol. VI. Academic Press, New York, pp. 49–152

  • Woodward F.I. 1987. Climate and Plant Distribution, Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

We thank Dirk Hölscher (Göttingen) for his constructive criticism of an earlier draft of the manuscript. This study was conducted while the authors were at the Department of Ecology, University of Kassel, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Leuschner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leuschner, C., Voß, S., Foetzki, A. et al. Variation in leaf area index and stand leaf mass of European beech across gradients of soil acidity and precipitation. Plant Ecol 186, 247–258 (2006). https://doi.org/10.1007/s11258-006-9127-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-006-9127-2

Keywords

Navigation