Skip to main content
Log in

Spatial variability of summer microclimates and plant species response along transects within clearcuts in a beech forest

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

In a 4383 ha beech forest in central Belgium, we investigated whether, within clearcuts, microclimate gradients are detectable, and we tested for correlations between plant species composition and microclimatic heterogeneity. The results highlight a strong correlation between microclimatic parameters and distance from the forest edge. Of the 47 taxa found, 38 (81%) showed a significant change in expected occurrence in response to at least one of the investigated microclimatic parameters (air and soil temperature, air humidity, light intensity). The results suggest that a substantial number of forest herbaceous species with broad European distributions show particular microclimatic requirements. Furthermore, many species show a different response to combined factors, such as for instance soil temperature with increasing air humidity, which indicates that combinations of microclimatic parameters stronger determine the actual temperature, humidity or light levels at which species are expected to be present or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson K.L., Leopold D.J. (2002) The role of canopy gaps in maintaining vascular plant diversity at a forested wetland in New York State. J. Torrey Bot. Soc. 129:238–250

    Article  Google Scholar 

  • Aude E., Lawesson J.E. (1998) Vegetation in Danish beech forests: the importance of soil, microclimate and management factors, evaluated by variation partitioning. Plant Ecol. 134:53–65

    Article  Google Scholar 

  • Austin M.P. (1999) The potential contribution of vegetation ecology to biodiversity research. Ecography 22: 465–484

    Article  Google Scholar 

  • Austin M.P., Meyers J.A. (1996) Current approaches to modelling the environmental niche of eucalypts: Implication for management of forest biodiversity. For. Ecol. Manage. 85: 95–106

    Article  Google Scholar 

  • Barg A.K., Edmonds R.L. (1999). Influence of partial cutting on site microclimate, soil nitrogen dynamics, and microbial biomass in Douglas-fir stands in western Washington. Can. J. For. Res. 29:705–713

    Article  Google Scholar 

  • Bio A.M.F., Alkemade R., Barendregt A. (1998) Determining alternative models for vegetation response analysis: a non-parametric approach. J. Veget. Sci. 9: 5–16

    Article  Google Scholar 

  • Bowden R.D., Newkirk K.M., Rullo G.M. (1998) Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions. Soil Biol. Biochem. 30:1591–1597

    Article  CAS  Google Scholar 

  • Brosofske K.D., Chen J.Q., Naiman R.J., Franklin J.F. (1997) Harvesting effects on microclimatic gradients from small streams to uplands in western Washington. Ecol. Appl. 7:1188–1200

    Article  Google Scholar 

  • Canham C.D., Denslow J.S., Platt W.J., Runkle J.R., Spies T.A., White P.S. (1990) Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Can. J. For. Res. 20:620–631

    Article  Google Scholar 

  • Chen J.Q., Franklin J.F., Spies T.A. (1993) Contrasting microclimates among clear-cut, edge, and interior of old-growth Douglas-fir forest. Agri. For. Meteorol. 63:219–237

    Article  Google Scholar 

  • Chen J.Q., Franklin J.F., Spies T.A. (1995) Growing-season microclimatic gradients from clear-cut edges into old-growth Douglas-fir forests. Ecol. Appl. 5:74–86

    Article  Google Scholar 

  • Chen J.Q., Franklin J.F. (1997) Growing season microclimate variability within an old-growth Douglas-fir forest. Climate Res. 8:21–34

    Article  Google Scholar 

  • Chen J.Q., Saunders S.C., Crow T.R., Naiman R.J., Brosofske K.D., Mroz G.D., Brookshire B.L., Franklin J.F. (1999) Microclimate in forest ecosystem and landscape ecology – variations in local climate can be used to monitor and compare the effects of different management regimes. BioScience 49:288–297

    Article  Google Scholar 

  • Cienciala E., Mellander P.E., Kucera J., Oplustilova M., Ottosson-Lofvenius M., Bishop K. (2002) The effect of a north-facing forest edge on tree water use in a boreal Scots pine stand. Can. J. For. Res. 32:693–702

    Article  Google Scholar 

  • Duckworth J.C., Bunce G.H., Malloch A.J.C. (2000) Vegetation gradients in Atlantic Europe: the use of existing phytosociological data in preliminary investigations on the potential effects of climate change on British vegetation. Global Ecol. Biogeogr. 9:187–199

    Article  Google Scholar 

  • Dufrêne M., Legendre P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67: 345–366

    Google Scholar 

  • Ellenberg H. (1974). Zeigerwerte der Gefasspflanzen Mitteleuropas. Scripta Geobot. 9: 1–122

    Google Scholar 

  • ESRI 1996. ArcView GIS. Environmental Systems Research Institute

  • Facelli J.M., Pickett S.T.A. (1991). Plant litter: its dynamics and effects on plant community structure. Bot. Rev. 57: 1–32

    Article  Google Scholar 

  • Fisher R.F., Binkley D. (2000). Ecology and Management of Forest Soils. John Wiley and Sons, New York

    Google Scholar 

  • Fleming R.L., Black T.A., Adams R.S., Stathers R.J. (1998). Silvicultural treatments, microclimatic conditions and seedling response in Southern interior clearcuts. Can. J. Soil Sci. 78: 115–126

    Google Scholar 

  • Fox L.R., Ribeiro S.P., Brown V.K., Masters G.J., Clarke I.P. (1999) Direct and indirect effects of climate change on St John’s wort, Hypericum perforatum L. (Hypericaceae). Oecologia 120: 113–122

    Article  Google Scholar 

  • Gehlhausen S.M., Schwartz M.W., Augspurger C.K. (2000). Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecol. 147: 21–35

    Article  Google Scholar 

  • Geiger R. (1965). The Climate Near the Ground. Harvard University Press, Cambridge

    Google Scholar 

  • Godefroid S., Rucquoij S., Koedam N. (2005). To what extent do forest herbs recover after clearcutting in a beech forest?. For. Ecol. Manage. 210: 39–53

    Article  Google Scholar 

  • Gosz J.R. (1991). Fundamental ecological characteristics of landscape boundaries. In: Holland M.M., Risser P.G., Naiman R.J. (eds) The Role of Landscape Boundaries in the Management and Restoration of changing Environments. Chapman and Hall, New York, pp 8–29

    Google Scholar 

  • Grytnes J.A., Birks H.J.B., Peglar S.M. (1999). Plant species richness in Fennoscandia: evaluating the relative importance of climate and history. Nordic J. Bot. 19: 489–503

    Article  Google Scholar 

  • Guisan A, Zimmermann N.E. (2000). Predictive habitat distribution models in ecology. Ecol. Modell. 135: 147–186

    Article  Google Scholar 

  • Hastie T.J, Tibshirani R.J. (1990). Generalised Additive Models. Chapman and Hall, London

    Google Scholar 

  • Heegaard E. (2002). A model for alpine species distribution in relation to snowmelt time and altitude. J. Veget. Sci. 13: 493–504

    Article  Google Scholar 

  • Herbauts J., El Bayad J, Gruber W. (1996). Influence of logging traffic on the hydromorphic degradation of acid forest soils developed on loessic loam in middle Belgium. For. Ecol. Manage. 87: 193–207

    Article  Google Scholar 

  • Hutchinson B.A, Matt D.R. (1977). The distribution of solar microclimatic within a deciduous forest. Ecol. Monogr. 47: 185–207

    Article  Google Scholar 

  • Iverson L.R, Hutchinson T.F. (2002). Soil temperature and moisture fluctuations during and after prescribed fire in mixed-oak forests. Nat. Areas J. 22: 296–304

    Google Scholar 

  • Jones H.G. (1992). Plants and Microclimate: A Quantitative Approach to Plant Physiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Kent M, Coker P. (1992). Vegetation Description and Analysis. A Practical Approach. Belhaven Press, London

    Google Scholar 

  • Kimmins J.P. (1997). Forest Ecology. A Foundation for Sustainable Management. Prentice Hall, New Jersey

    Google Scholar 

  • Lambinon J., De Langhe J.E., Delvosalle L, Duvigneaud J. (1998). Flora van België, het Groothertogdom Luxemburg, Noord-Frankrijk en de aangrenzende gebieden. Nationale Plantentuin van België, Meise

    Google Scholar 

  • Levin S.A. (1992). Problem of pattern and scale in ecology. Ecology 73: 1943–1967

    Article  Google Scholar 

  • Liechty H.O., Holmes M.J., Reed D.D, Mroz G.D. (1992). Changes in microclimate after stand conversion in two northern hardwood stands. For. Ecol. Manage. 50: 253–264

    Article  Google Scholar 

  • Matthews J.D. (1999). Silvicultural Systems. Clarendon Press, Oxford

    Google Scholar 

  • McCune B, Mefford M.J. (1997). PC-ORD. Multivariate Analysis of Ecological Data. Version 3.0. MjM Software Design, Gleneden Beach, Oregon, USA

    Google Scholar 

  • Meentemeyer V, Box E.O. (1987). Scale effects in landscape studies. In: Turner M.G. (eds) Landscape Heterogeneity and Disturbance. Springer-Verlag, New York, pp 15–34

    Google Scholar 

  • Murcia C. (1995). Edge effects in fragmented forests: implications for conservation. Trends Ecol. Evol. 10: 58–62

    Article  Google Scholar 

  • Newmark W.D. (2001). Tanzanian forest edge microclimatic gradients: dynamic patterns. Biotropica 33: 2–11

    Google Scholar 

  • Renhorn K.E., Esseen P.A., Palmqvist K, Sundberg B. (1997). Growth and vitality of epiphytic lichens. 1. Responses to microclimate along a forest edge-interior gradient. Oecologia 109: 1–9

    Article  Google Scholar 

  • Reynolds P.E., Thevathasan N.V., Simpson J.A., Gordon A.M., Lautenschlager R.A., Bell W.F., Gresch D.A, Buckley D.A. (2000). Alternative conifer release treatments affect microclimate and soil nitrogen mineralization. For. Ecol. Manage. 133: 115–125

    Article  Google Scholar 

  • Rosenberg N.J., Blad B.L, Verna S.B. (1983). Microclimate: The Biological Environment. John Wiley and Sons, New-York

    Google Scholar 

  • Schmidt W. (2002). Stickstoffkreislauf in Schlaglücken eines Kalkbuchenwaldes. Allgemeine Forst und Jagdzeitung 173: 67–76

    Google Scholar 

  • Statsoft Inc. (2001) STATISTICA (Data Analysis Software System). Version 6. Statsoft Inc., Tulsa, OK

    Google Scholar 

  • Ter Braak C.J.F. and Šmilauer P. (2002). CANOCO Reference Manual and CanoDraw for Windows. User’s Guide: Software for Canonical Ordination (version 4.5). Microcomputer Power, Ithaca, NY

  • Unwin D.J. (1997). Microclimate Measurement for Ecologists. Academic Press, London

    Google Scholar 

  • Vanwijnsberghe S. (2000). Projet de plan de gestion de la Forêt de Soignes partie de Bruxelles-Capitale. Brussels Institute for Environmental Management. Forest Department, Brussels

    Google Scholar 

  • Vetaas O.R. (2002). Realized and potential climate niches: a comparison of four Rhododendron tree species. J. Biogeogr. 29: 545–554

    Article  Google Scholar 

  • Walther G.R. (2000). Climatic forcing on the dispersal of exotic species. Phytocoenologia 30: 409–430

    Google Scholar 

  • Wehrlen L. (1985). La ronce (Rubus fruticosus L. agg.) en forêt. Revue Forestière Française 37: 288–304

    Article  Google Scholar 

  • Westhoff V, Van der Maarel E. (1973). The Braun-Blanquet approach. In: Whittaker R.H. (eds) Handbook of Vegetation Science. Part V: Ordination and Classification of Vegetation. Dr. W. Junk B.V. Publishers, The Hague, pp 619–726

    Google Scholar 

  • Williams-Linera G., Dominguez-Gastelu V, Garcia-Zurita M.E. (1998). Microenvironment and floristics of different edges in a fragmented tropical rainforest. Conserv. Biol. 12: 1091–1102

    Article  Google Scholar 

  • Woodward F.I. (1987). Climate and plant distribution. Cambridge University Press, Cambridge

    Google Scholar 

  • Xu M., Chen J.Q, Brookshire B.L. (1997). Temperature and its variability in oak forests in the southeastern Missouri Ozarks. Climate Res. 8: 209–223

    Article  Google Scholar 

  • Xu M., Chen J.Q, Qi Y. (2002). Growing-season temperature and soil moisture along a 10 km transect across a forested landscape. Climate Res. 22: 57–72

    Article  Google Scholar 

  • Zheng D.L., Chen J.Q., Song B., Xu M., Sneed P, Jensen R. (2000) Effects of silvicultural treatments on summer forest microclimate in southeastern Missouri Ozarks. Climate Res. 15: 45–59

    Article  Google Scholar 

Download references

Acknowledgments

Most analyses synthesised in this paper were performed with financial support provided by the Brussels Institute for Environmental Management (B.I.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Godefroid.

Appendix 1

Appendix 1

Regression results for species on air humidity, air temperature, soil temperature and light intensity.

 

Predictor

Null dev.

Fitted dev.

Res.df

F

p

Agrostis stolonifera

AirH

1251.40

1043.42

79.1

3.22

0.047531

AirT+SoilT

1251.40

967.26

77.1

2.92

0.027385

Anemone nemorosa

AirH

2.97

2.22

79.0

6.00

0.003738

Light

2.97

1.88

79.1

3.32

0.042971

Athyrium filix-femina

Light

328.84

164.42

79.1

20.13

<1.0e−6

SoilT

328.84

240.23

79.1

4.25

0.018885

AirH+AirT

328.84

201.24

77.1

5.06

0.001269

Cardamine flexuosa

AirH

8.72

6.68

79.1

3.46

0.037699

Centaurium erythraea

AirH+AirT

9.28

7.27

77.1

2.57

0.046221

AirH+Light

9.28

6.80

77.1

3.39

0.013534

AirT+Light

9.28

6.76

77.1

3.68

0.009076

AirT+SoilT

9.28

7.33

77.2

2.62

0.043680

Dactylis glomerata

AirH+Light

158.47

121.63

77.1

2.62

0.042365

AirH+SoilT

158.47

114.86

77.1

3.29

0.016315

AirT+SoilT

158.47

110.72

77.2

3.83

0.007589

Light+SoilT

158.47

112.76

77.1

3.95

0.006240

Deschampsia flexuosa

AirH+AirT

2150.33

1787.85

77.1

2.58

0.045665

AirT+Light

2150.33

1666.56

77.1

3.53

0.011257

Digitalis purpurea

AirT

10.46

6.59

79.0

14.83

0.000003

Dryopteris carthusiana

AirH

297.43

244.37

79.0

3.50

0.035475

Dryopteris dilatata

AirH+Light

1606.97

1346.52

77.0

2.68

0.038174

AirH+SoilT

1606.97

1367.69

77.1

2.63

0.041164

Light+SoilT

1606.97

1342.51

77.0

2.91

0.026658

Epilobium angustifolium

AirH+SoilT

10.25

8.22

77.1

2.51

0.049798

Epilobium roseum

SoilT

8.72

7.17

79.1

3.50

0.036886

Epilobium tetragonum

SoilT

6.14

5.01

79.1

3.26

0.045316

Galium aparine

AirT

131.49

96.95

79.0

4.13

0.019628

SoilT

131.49

94.70

79.1

4.69

0.013164

AirH+Light

131.49

86.58

77.0

2.82

0.030734

Galeopsis tetrahit

AirT+SoilT

25.48

18.00

77.1

3.72

0.008738

Hieracium umbellatum

Light

1122.83

911.20

79.1

3.84

0.027205

Holcus lanatus

AirH

1061.75

869.80

79.0

4.09

0.020134

AirT+Light

1061.75

753.61

77.0

3.08

0.021214

AirT+SoilT

1061.75

809.05

77.2

2.90

0.029155

Light+SoilT

1061.75

778.80

77.2

3.94

0.006536

Impatiens parviflora

AirT

1666.01

1481.29

79.1

3.17

0.049730

Juncus effusus

AirT+Light

1270.27

1012.78

77.0

3.16

0.018546

Lapsana communis

Light

5.33

3.89

79.0

5.61

0.005257

AirT+AirH

5.33

3.72

77.2

2.88

0.029662

AirH+SoilT

5.33

3.53

77.0

4.58

0.002259

Lonicera periclymenum

AirH

551.67

388.81

78.0

3.28

0.025357

AirT

551.67

261.78

79.1

28.30

<1.0e−6

SoilT

551.67

367.95

79.0

6.84

0.001824

Lotus corniculatus

AirH

7.43

5.14

79.1

7.18

0.001591

AirT

7.43

4.13

78.1

12.54

0.000001

Luzula campestris

AirH

25.27

19.09

79.1

4.15

0.020897

AirT

25.27

14.96

79.0

11.40

0.000048

SoilT

25.27

17.65

79.0

6.32

0.002840

Luzula multiflora

AirT

226.45

176.89

79.1

4.21

0.020027

Luzula pilosa

AirT

24.00

17.48

79.1

5.60

0.005753

SoilT

24.00

17.52

79.1

4.98

0.009946

AirH+Light

24.00

13.93

77.0

8.35

0.000012

Luzula sylvatica

AirH

38.19

22.65

79.0

7.45

0.001137

SoilT

38.19

18.81

79.1

24.37

<1.0e−6

Moehringia trinervia

AirH

2.97

1.89

79.1

9.13

0.000324

SoilT

2.97

2.37

79.1

3.31

0.043676

Myosotis arvensis

AirH

22.37

16.46

79.1

4.08

0.022337

AirT

22.37

11.31

79.1

23.55

<1.0e−6

Light

22.37

15.94

79.1

4.62

0.014068

SoilT

22.37

11.37

79.0

16.25

0.000001

Polygonum hydropiper

AirT

175.09

145.79

79.0

4.54

0.013377

Pteridium aquilinum

AirH+Light

1836.87

1362.88

77.1

3.20

0.018589

Ranunculus repens

Light

6.14

3.93

79.1

9.76

0.000192

SoilT

6.14

4.82

79.1

4.20

0.019732

Rubus fruticosus agg.

SoilT

3438.85

2884.00

79.0

5.53

0.005794

Rumex acetosella

Light

1.76

1.31

79.0

4.15

0.019262

SoilT

1.76

1.24

79.0

5.29

0.006950

AirT+AirH

1.76

1.11

77.0

4.64

0.002080

Scrophularia nodosa

AirH

22.68

13.74

79.0

10.47

0.000107

AirT

22.68

11.71

79.0

20.60

<1.0e−6

Light

22.68

16.16

79.1

5.06

0.009590

SoilT

22.68

15.90

79.1

6.55

0.002699

Stachys sylvestris

AirH+Light

236.50

183.15

77.2

2.78

0.034494

Stellaria media

SoilT

25.83

19.87

79.1

4.27

0.018547

AirT+Light

25.83

19.03

77.2

2.85

0.031579

Teucrium scorodonia

AirT

291.70

200.47

79.0

12.10

0.000030

Urtica dioica

AirH

16.94

14.88

79.0

3.52

0.035303

  1. AirH=air humidity; AirT=air temperature; SoilT=soil temperature; Light =light intensity. Null dev.=null model deviance; Fitted dev.=fitted model deviance; res. df=fitted model residual degree of freedom; p=p-value for F-test. Only significant relationships (p<0.05) are reported.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godefroid, S., Rucquoij, S. & Koedam, N. Spatial variability of summer microclimates and plant species response along transects within clearcuts in a beech forest. Plant Ecol 185, 107–121 (2006). https://doi.org/10.1007/s11258-005-9088-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-005-9088-x

Key words

Navigation