Skip to main content

Advertisement

Log in

Alpine vascular plant species richness: the importance of daily maximum temperature and pH

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Species richness in the alpine zone varies dramatically when communities are compared. We explored (i) which stress and disturbance factors were highly correlated with species richness, (ii) whether the intermediate stress hypothesis (ISH) and the intermediate disturbance hypothesis (IDH) can be applied to alpine ecosystems, and (iii) whether standing crop can be used as an easily measurable surrogate for causal factors determining species richness in the alpine zone. Species numbers and standing crop were determined in 14 alpine plant communities in the Swiss Alps. To quantify the stress and disturbance factors in each community, air temperature, relative air humidity, wind speed, global radiation, UV-B radiation, length of the growing season, soil suction, pH, main soil nutrients, waterlogging, soil movement, number of avalanches, level of denudation, winter dieback, herbivory, wind damage, and days with frost were measured or observed. The present study revealed that 82% of the variance in␣vascular species richness among sites could be explained by just two abiotic factors, daily maximum temperature and soil pH. Daily maximum temperature and pH affect species richness both directly and via their effects on other environmental variables. Some stress and disturbance factors were related to species richness in a monotonic way, others in an unimodal way. Monotonic relationships suggest that the harsher the environment is, the fewer species can survive in such habitats. In cases of unimodal relationships (ISH and IDH) species richness decreases at both ends of the gradients due to the harsh environment and/or the interaction of other environmental factors. Competition and disturbance seemed only to play a secondary role in the form of fine-tuning species richness in specific communities. Thus, we concluded that neither the ISH nor the IDH can be considered useful conceptual models for the alpine zone.

Furthermore, we found that standing crop can be used as an easily measurable surrogate for causal factors determining species richness in the alpine zone, even though there is no direct causality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aeschimann D. and Heitz C. 1996. Synonymie-Index der Schweizer Flora und der angrenzenden Gebiete (SISF). Rochat & Baumann, Genève

    Google Scholar 

  • Beckage B. and Stout I.J. 2000. Effects of repeated burning on species richness in a Florida pine savanna: a test of the intermediate disturbance hypothesis. J. Vege. Sci. 11: 113–122

    Article  Google Scholar 

  • Callaway R.M., Brooker R.W., Choler P., Kikvidze Z., Lortie C.J., Michalet R., Paolini L., Pugnaire F.I., Newingham B., Aschehoug E.T., Armas C., Kikodze D., and Cook B.J. 2002. Positive interactions among alpine plants increase with stress. Nature 417: 844–847

    Article  PubMed  CAS  Google Scholar 

  • Chytrý M., Tichý L., and Roleček J. 2003. Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient. Folia Geobot. 38: 429–442

    Article  Google Scholar 

  • Collins S.L., Glenn S.M., and Gibson D.J. 1995. Experimental analysis of intermediate disturbance and initial floristic composition: decoupling cause and effect. Ecology 76: 486–492

    Article  Google Scholar 

  • Connell J.H. 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310

    Article  PubMed  CAS  Google Scholar 

  • Ellenberg H. 1996. Vegetation Mitteleuropas mit den Alpen. Ulmer, Stuttgart (5. Auflage)

    Google Scholar 

  • Engle D.M., Palmer M.W., Crockett J.S., Mitchell R.L., and Stevens R. 2000. Influence of late season fire on early successional vegetation of an Oklahoma prairie. J. Vege. Sci. 11: 135–144

    Article  Google Scholar 

  • Ewald J. 2003. The calcareous riddle: why are there so many calciphilous species in the Central European flora?. Folia Geobot. 38: 357–366

    Article  Google Scholar 

  • FAL 1996. Schweizerische Referenzmethoden der Eidgenössischen Landwirtschaftlichen Forschungsanstalten. Band 1. Zürich Reckenholz

  • Fayolle S., Cazaubon A., Comte K., and Franquet E. 1998. The intermediate disturbance hypothesis: application of this concept to the response of epilithon in a regulated Mediterranean river (Lower-Durance, southeastern France). Arch. Hydrobiol. 143: 57–77

    Google Scholar 

  • Fischer E. 2002. Globalstrahlungsmessung mit Solarzellen. Seminararbeit, Universität Bern (unpublished, copies can be obtained from the corresponding author)

  • Flöder S. and Sommer U. 1999. Diversity in planktonic communities: an experimental test of the intermediate disturbance hypothesis. Limnol. Oceanogr. 44: 1114–1119

    Article  Google Scholar 

  • Foth H.D. 1990. Fundamentals in Soil Science 8. Wiley, New York

    Google Scholar 

  • Fox J.F. 1981. Intermediate levels of soil disturbance maximize alpine plant diversity. Nature 293: 564–565

    Article  Google Scholar 

  • Fox J.F. 1985. Plant diversity in relation to plant production and disturbance by voles in Alaskan tundra communities. Arct. Alp. Res. 17(2): 199–204

    Article  Google Scholar 

  • Gough L., Grace J.B., and Taylor L. 1994 The relationship between species richness and community biomass: the importance of environmental variables. Oikos 70: 271–279

    Article  Google Scholar 

  • Gough L., Shaver G.R., Carroll J., Royer D.L., and Laundre J.A. 2000. Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH. J. Ecol. 88: 54–66

    Article  Google Scholar 

  • Grabherr G. and Mucina L. (eds) 1993. Die Pflanzengesellschaften Österreichs. Teil 2. Natürliche waldfreie Vegetation. Fischer, Jena

    Google Scholar 

  • Grace J.B. 1999. The factors controlling species density in herbaceous plant communities: an assessment. Perspect. Plant Ecol. Evol. Syst. 2(1): 1–28

    Article  Google Scholar 

  • Grime J.P. 1973. Competitive exclusion in herbaceous vegetation. Nature 242: 344–347

    Article  Google Scholar 

  • Grime J.P. 1979. Plant Strategies and Vegetation Processes. Wiley, Chichester

    Google Scholar 

  • Grime J.P. 2001. Plant Strategies, Vegetation Processes, and Ecosystem Properties, 2nd ed. Wiley, Chichester

    Google Scholar 

  • Haynes R.J. 1986. The decomposition process: mineralization, immobilization, humus formation, and degradation. In: Haynes R.J. (ed.), Mineral Nitrogen in the Plant–Soil System. Academic Press, Orlando, pp. 52–126

    Google Scholar 

  • Henry G.H.R. and Molau U. 1997. Tundra plants and climate change: the International Tundra Experiment (ITEX). Global Change Biol. 3(Suppl. 1): 1–9

    Article  Google Scholar 

  • Holm S. 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6: 65–70

    Google Scholar 

  • Horn H.S. 1975. Markovian properties of forest succession. In: Cody M.L. and Diamond J.M. (eds), Ecology and Evolution of Communities. MA, Belknap, Cambridge, pp. 196–211

    Google Scholar 

  • Imhof E. (Hrsg.) 1965–1978. Atlas der Schweiz. Bundesamt für Landestopographie, Bern

  • Kammer P.M. and Möhl A. 2002. Factors controlling species richness in Alpine plant communities. An assessment of the importance of stress and disturbance. Arct. Antarct. Alp. Res. 34(4): 398–407

    Article  Google Scholar 

  • Karlson R.H. and Hurd L.E. 1993. Disturbance, coral reef communities, and changing ecological paradigms. Coral Reefs 12: 117–125

    Article  Google Scholar 

  • Komárková V. 1993. Vegetation type hierarchies and landform disturbance in arctic Alaska and alpine Colorado with emphasis on snowpatches. Vegetatio 106: 155–181

    Google Scholar 

  • Körner C. 1994. Impact of atmospheric changes on high mountain vegetation. In: Beniston M. (ed.), Mountain Environments in Changing Climates. Routledge, London, New York, pp. 155–166

    Google Scholar 

  • Körner C. 1999. Alpine Plant Life. Springer, Berlin

    Google Scholar 

  • Landolt E. and Urbanska K.M. 1989. Our Alpine Flora. Swiss Alpine Club, Chur

    Google Scholar 

  • Legendre P. and Legendre L. 1998. Numerical Ecology, 2nd ed. Elsevier, Amsterdam

    Google Scholar 

  • Mackey R.L. and Currie D.J. 2000. A re-examination of the expected effects of disturbance on diversity. Oikos 88: 483–493

    Article  Google Scholar 

  • Mittelbach G.G., Steiner C.F., Scheiner S.M., Gross K.L., Reynolds H.L., Waide R.B., Willig M.R., Dodson S.I., and Gough L. 2001. What is the observed relationship between species richness and productivity?. Ecology 82(9): 2381–2396

    Article  Google Scholar 

  • Müller P., Güsewell P., and Edwards P.J. 2003. Einfluss von Boden und Bewirtschaftung auf die Artenvielfalt der Vegetation auf Alpweiden im Glarnerland. Bot. Helvet. 113(1): 15–36

    Google Scholar 

  • Onipchenko V.G. and Semenova G.V. 1995. Comparative analysis of the floristic richness of alpine communities in the Caucasus and the Central Alps. J. Vege. Sci. 6: 299–304

    Article  Google Scholar 

  • Palmer M.W. 1994. Variation in species richness: towards a unification of hypotheses. Folia Geobotanica et Phytotaxonomica 29: 511–530

    Google Scholar 

  • Rosenzweig M.L. and Abramsky Z. 1993. How are diversity and productivity related? In: Ricklefs R.E. and Schluter D. (eds), Species Diversity in Ecological Communities. University of Chicago Press, Chicago, pp. 52–65

    Google Scholar 

  • Scheffer F. and Schachtschabel P. 1998. Lehrbuch der Bodenkunde. F. Enke, Stuttgart (14. Auflage)

    Google Scholar 

  • Sommer U. 1995. An experimental test of the intermediate disturbance hypothesis using cultures of marine phytoplankton. Limnol. Oceanogr. 40: 1271–1277

    Article  Google Scholar 

  • Stanton M.L., Rejmánek M., and Galen C. 1994. Changes in vegetation and soil fertility along a predictable snowmelt gradient in the Mosquito Range, Colorado, U.S.A. Arct. Alp. Res. 26: 363–374

    Article  Google Scholar 

  • Tilman D., Wedin D., and Knops J. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379: 718–720

    Article  CAS  Google Scholar 

  • Van der Welle M.E.W., Vermeulen P.J., Shaver G.R., and Berendse F. 2003. Factors determining plant species richness in Alaskan arctic tundra. J. Vege. Sci. 14(5): 711–720

    Article  Google Scholar 

  • Vonlanthen C., Bühler A., Veit H., Kammer P., and Eugster W. 2004. Charakterisierung ökologischer Standortfaktoren in alpinen Pflanzengemeinschaften. Naturforschende Gesellschaft Bern 61: 49–77

    Google Scholar 

  • Vonlanthen C.M., Kammer P.M., Eugster W., Bühler A., and Veit H. Alpine plant communities: an assessment of their relation to microclimatological, pedological, geomorphological, and other factors (submitted)

  • Waide R.B., Willig M.R., Steiner C.F., Mittelbach G., Gough L., Dodson S.I., Juday G.P., and Parmenter R. 1999. The relationship between productivity and species richness. Annu. Rev. Ecol. Syst. 30(1): 257–300

    Article  Google Scholar 

  • Warnecke G. 1997. Meteorologie und Umwelt – eine Einführung. Springer, Berlin, Heidelberg (2. Auflage)

    Google Scholar 

  • White A.S., Witham J.W., Hunter J., Malcolm L., and Kimball A.J. 1999. Relationship between plant species richness and biomass in a coastal Maine Quercus-Pinus forest. J. Vege. Sci. 10: 755–762

    Article  Google Scholar 

  • White P.S. and Jentsch A. 2001. The Search for Generality in Studies of Disturbance and Ecosystem Dynamics. Progress in Botany 62. Springer, Berlin, pp. 399–449

    Google Scholar 

Download references

Acknowledgements

This study was supported by the “Stiftung zur Förderung der wissenschaftlichen Forschung der Universität Bern”, the “Hochschulstiftung der Burgergemeinde”, ``the Centre of Research and Development of LLB Berne'', and SEVA-Lotteriefonds (Kanton Bern). We are very grateful to all persons without whose contributions this study would not have been possible, in particular T.␣Reist (Bern), C. Schöb (Bern), and L. Vonlanthen (Freiburg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.M. Vonlanthen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vonlanthen, C., Kammer, P., Eugster, W. et al. Alpine vascular plant species richness: the importance of daily maximum temperature and pH. Plant Ecol 184, 13–25 (2006). https://doi.org/10.1007/s11258-005-9048-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-005-9048-5

Key words

Navigation