Skip to main content

Advertisement

Log in

Colonization and habitat selection of a declining farmland species in urban areas

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

A Correction to this article was published on 23 May 2020

This article has been updated

Abstract

Despite the accelerating global urbanization and its associated implications for wildlife and humans, we know little about the biology of urban ecosystems. Here, we investigated colonization and habitat selection of the European hare (Lepus europaeus), a declining farmland species, in urban areas in Denmark, using a combination of citizen science data and transect counts. Further, we estimated the population density of urban hares in Aarhus, Denmark’s second largest city. Our results provide the first evidence that hares have established populations in urban areas, potentially in response to decreasing habitat quality in rural areas due to agricultural intensification. The hare density in Aarhus was ca. 8 hares per km2, which is comparable to or slightly higher than hare abundance estimates from various pastural areas in Europe, suggesting that urban areas provide suitable habitat for hares. Hare habitat selection was generally associated with areas consisting of large lawns, such as high buildings and parks, which potentially provide high-quality forage throughout the year. Considering the increasing expansion of urban areas and deteriorating habitat quality of agricultural areas, urban planning that incorporates habitat requirements for wildlife could help to support urban animal populations, especially for species of conservation concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 23 May 2020

    In our paper, using distance sampling, we estimated the population density of hares in Aarhus city to 6.8 hares/km2.

References

  • Altwegg R, Jenkins A, Abadi F (2014) Nestboxes and immigration drive the growth of an urban Peregrine Falcon Falco peregrinus population Ibis 156:107–115

  • Arnold TW (2010) Uninformative parameters and model selection using Akaike's information criterion the. J Wildl Manag 74:1175–1178

    Article  Google Scholar 

  • Attwell K (2000) Urban land resources and urban planting—case studies from Denmark. Landsc Urban Plan 52:145–163

    Article  Google Scholar 

  • Barton K (2016) Package “MuMIn”: multi-model inference. R package, version 1.15. 6. Accessed,

  • Bates D et al. (2015) Package ‘lme4’

  • Bivand R et al. (2018) Package ‘rgeos’ R package v 03–24

  • Bolker B, Skaug H, Magnusson A, Nielsen A (2012) Getting started with the glmmADMB package available at glmmadmb r-forge r-project org/glmmADMB pdf

  • Brown L (2001) Building an economy for the earth earth policy institute

  • Chambers LK, Dickman CR (2002) Habitat selection of the long-nosed bandicoot, Perameles nasuta (Mammalia, Peramelidae), in a patchy urban environment. Austral Ecology 27:334–342

    Article  Google Scholar 

  • Dickinson JL, Zuckerberg B, Bonter DN (2010) Citizen science as an ecological research tool: challenges and benefits. Annu Rev Ecol Evol Syst 41:149–172

    Article  Google Scholar 

  • Ditchkoff SS, Saalfeld ST, Gibson CJ (2006) Animal behavior in urban ecosystems: modifications due to human-induced stress. Urban ecosystems 9:5–12

    Article  Google Scholar 

  • Edwards P, Fletcher M, Berny P (2000) Review of the factors affecting the decline of the European brown hare, Lepus europaeus (Pallas, 1778) and the use of wildlife incident data to evaluate the significance of paraquat Agriculture, ecosystems & environment 79:95-103

  • Emmerson M et al. (2016) How agricultural intensification affects biodiversity and ecosystem services. In: Advances in Ecological Research, vol 55. Elsevier, pp 43-97

  • Engemann K, Pedersen CB, Arge L, Tsirogiannis C, Mortensen PB, Svenning J-C (2019) Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. Proceedings of the National Academy of Sciences 116:5188–5193

    Article  CAS  Google Scholar 

  • Fernandez-Juricic E, Jokimäki J (2001) A habitat island approach to conserving birds in urban landscapes: case studies from southern and northern Europe. Biodiversity & Conservation 10:2023–2043

    Article  Google Scholar 

  • Foley JA et al (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  PubMed  Google Scholar 

  • Frylestam B (1986) Agricultural land use effects on the winter diet of brown hares (Lepus europaeus Pallas) in southern Sweden. Mammal Rev 16:157–161

    Article  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760

    Article  CAS  PubMed  Google Scholar 

  • Guttu J, Nyhuus S, Saglie I, Thorén AH (1997) Boligfortetting i Oslo. Konsekvenser for grønnstrukturer, bokvaliteter og arkitektur. NIBR Prosjektrapport,

  • Heldbjerg H, Sunde P, Fox AD (2017) Continuous population declines for specialist farmland birds 1987-2014 in Denmark indicates no halt in biodiversity loss in agricultural habitats. Bird Conservation International 28:1–15

    Google Scholar 

  • Hewson R (1977) Food selection by brown hares (Lepus capensis) on cereal and turnip crops in north-East Scotland. Journal of Applied Ecology 14:779–785

    Article  Google Scholar 

  • Hijmans RJ et al. (2015) Package ‘raster’ R package

  • Honda T, Iijima H, Tsuboi J, Uchida K (2018) A review of urban wildlife management from the animal personality perspective: The case of urban deer. Science of the total environment 644:576–582

    Article  CAS  PubMed  Google Scholar 

  • Hubert P, Julliard R, Biagianti S, Poulle M-L (2011) Ecological factors driving the higher hedgehog (Erinaceus europeaus) density in an urban area compared to the adjacent rural area. Landscape and Urban Planning 103:34–43

    Article  Google Scholar 

  • Kahlert J, Fox AD, Heldbjerg H, Asferg T, Sunde P (2015) Functional Responses of Human Hunters to Their Prey—Why Harvest Statistics may not Always Reflect Changes in Prey Population Abundance. Wildlife biology 21:294–303

    Article  Google Scholar 

  • Knauer F, Küchenhoff H, Pilz S (2010) A statistical analysis of the relationship between red fox Vulpes vulpes and its prey species (grey partridge Perdix perdix, brown hare Lepus europaeus and rabbit Oryctolagus cuniculus) in Western Germany from 1958 to 1998. Wildl Biol 16:56–66

    Article  Google Scholar 

  • Lowry H, Lill A, Wong BB (2013) Behavioural responses of wildlife to urban environments. Biological reviews 88:537–549

    Article  PubMed  Google Scholar 

  • Luck GW, Smallbone LT, O’Brien R (2009) Socio-economics and vegetation change in urban ecosystems: patterns in space and time. Ecosystems 12:604

    Article  Google Scholar 

  • Lundström-Gilliéron C, Schlaepfer R (2003) Hare abundance as an indicator for urbanisation and intensification of agriculture in Western Europe. Ecological modelling 168:283–301

    Article  Google Scholar 

  • Luniak M (2004) Synurbization–adaptation of animal wildlife to urban development. In: Proc. 4th Int. Symposium Urban Wildl. Conserv. Tucson. Citeseer, pp 50–55

  • Laake J, Borchers D, Thomas L, Miller D, Bishop J (2015) Mrds: mark–recapture distance sampling. R package version 2.1. 12

  • Magle SB, Hunt VM, Vernon M, Crooks KR (2012) Urban wildlife research: past, present, and future. Biol Conserv 155:23–32

    Article  Google Scholar 

  • Marks CA, Bloomfield TE (2006) Home-range size and selection of natal den and diurnal shelter sites by urban red foxes (Vulpes vulpes) in Melbourne. Wildlife Research 33:339–347

    Article  Google Scholar 

  • Mayer M, Ullmann W, Heinrich R, Fischer C, Blaum N, Sunde P (2019) Seasonal effects of habitat structure and weather on the habitat selection and home range size of a mammal in agricultural landscapes Landscape Ecology:1–16

  • Mayer M, Ullmann W, Sunde P, Fischer C, Blaum N (2018) Habitat selection by the European hare in arable landscapes: The importance of small-scale habitat structure for conservation. Ecology and Evolution 8:11619–11633

    Article  PubMed  PubMed Central  Google Scholar 

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260

    Article  Google Scholar 

  • Miller DL, Rexstad E, Thomas L, Marshall L, Laake JL (2016) Distance sampling in R BioRxiv:063891

  • Murtaugh PA (2009) Performance of several variable-selection methods applied to real ecological data. Ecology letters 12:1061–1068

    Article  PubMed  Google Scholar 

  • Nagy C, Bardwell K, Rockwell RF, Christie R, Weckel M (2012) Validation of a citizen science-based model of site occupancy for eastern screech owls with systematic data in suburban New York and Connecticut. Northeastern Naturalist 19:143–159

    Article  Google Scholar 

  • Narango DL, Tallamy DW, Marra PP (2018) Nonnative plants reduce population growth of an insectivorous bird. Proceedings of the National Academy of Sciences 115:11549–11554

    Article  CAS  Google Scholar 

  • Neumann F, Schai-Braun S, Weber D, Amrhein V (2012) European hares select resting places for providing cover Hystrix, the Italian Journal of Mammalogy 22

  • O’hara RB, Kotze DJ (2010) Do not log-transform count data. Methods in Ecology and Evolution 1:118–122

    Article  Google Scholar 

  • Ogen-Odoi AA, Dilworth T (1984) Effects of grassland burning on the savanna hare-predator relationships in Uganda. African Journal of Ecology 22:101–106

    Article  Google Scholar 

  • Pagh S (2008) The history of urban foxes in Aarhus and Copenhagen. Denmark Lutra 51:51

    Google Scholar 

  • Parker TS, Nilon CH (2008) Gray squirrel density, habitat suitability, and behavior in urban parks. Urban Ecosyst 11:243–255

    Article  Google Scholar 

  • Pépin D, Angibault JM (2007) Selection of resting sites by the European hare as related to habitat characteristics during agricultural changes. European Journal of Wildlife Research 53:183–189

    Article  Google Scholar 

  • Peyraud J-L, Taboada M, Delaby L (2014) Integrated crop and livestock systems in Western Europe and South America: a review. European Journal of Agronomy 57:31–42

    Article  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing

  • Roedenbeck IA, Voser P (2008) Effects of roads on spatial distribution, abundance and mortality of brown hare (Lepus europaeus) in Switzerland. Eur J Wildl Res 54:425–437

    Article  Google Scholar 

  • Rutz C (2008) The establishment of an urban bird population. J Anim Ecol 77:1008–1019

    Article  PubMed  Google Scholar 

  • Sandøe P, Nørspang AP, Kondrup SV, Bjørnvad CR, Forkman B, Lund TB (2018) Roaming companion cats as potential causes of conflict and controversy: A representative questionnaire study of the Danish public. Anthrozoös 31:459–473

    Article  Google Scholar 

  • Schai-Braun SC, Reichlin TS, Ruf T, Klansek E, Tataruch F, Arnold W, Hackländer K (2015) The European hare (Lepus europaeus): a picky herbivore searching for plant parts rich in fat. PLoS One 10:e0134278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schai-Braun SC, Rödel HG, Hackländer K (2012) The influence of daylight regime on diurnal locomotor activity patterns of the European hare (Lepus europaeus) during summer. Mammalian Biology-Zeitschrift für Säugetierkunde 77:434–440

    Article  Google Scholar 

  • Schai-Braun SC, Weber D, Hackländer K (2013) Spring and autumn habitat preferences of active European hares (Lepus europaeus) in an agricultural area with low hare density. Eur J Wildl Res 59:387–397

    Article  Google Scholar 

  • Schmidt NM, Asferg T, Forchhammer MC (2004) Long-term patterns in European brown hare population dynamics in Denmark: effects of agriculture, predation and climate. BMC Ecol 4:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulze R (2012) Development of a quantification method for European brown hares (Lepus europaeus) in urban areas on the example of Lichtenberg. GRIN Verlag, Berlin

    Google Scholar 

  • Smith RK, Jennings NV, Harris S (2005) A quantitative analysis of the abundance and demography of European hares Lepus europaeus in relation to habitat type, intensity of agriculture and climate. Mammal Rev 35:1–24

    Article  Google Scholar 

  • Stillfried M et al (2017) Do cities represent sources, sinks or isolated islands for urban wild boar population structure? J Appl Ecol 54:272–281

    Article  Google Scholar 

  • Storkey J, Meyer S, Still KS, Leuschner C (2011) The impact of agricultural intensification and land-use change on the European arable flora. Proceedings of the Royal Society B-Biological Sciences 279:1421–1429

    Article  PubMed Central  Google Scholar 

  • Tapper S, Barnes R (1986) Influence of farming practice on the ecology of the brown hare (Lepus europaeus). Journal of Applied Ecology 23:39–52

    Article  Google Scholar 

  • Thomas L et al (2010) Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology 47:5–14

    Article  PubMed  Google Scholar 

  • Tscharntke T et al (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59

    Article  Google Scholar 

  • Tsiafouli MA, Thébault E, Sgardelis SP, de Ruiter PC, van der Putten W, Birkhofer K, Hemerik L, de Vries FT, Bardgett RD, Brady MV, Bjornlund L, Jørgensen HB, Christensen S, Hertefeldt TD, Hotes S, Gera Hol WH, Frouz J, Liiri M, Mortimer SR, Setälä H, Tzanopoulos J, Uteseny K, Pižl V, Stary J, Wolters V, Hedlund K (2015) Intensive agriculture reduces soil biodiversity across Europe. Glob Chang Biol 21:973–985

    Article  PubMed  Google Scholar 

  • Ullmann W, Fischer C, Pirhofer-Walzl K, Kramer-Schadt S, Blaum N (2018) Spatiotemporal variability in resources affects herbivore home range formation in structurally contrasting and unpredictable agricultural landscapes. Landscape Ecology 33:1–13. https://doi.org/10.1007/s10980-018-0676-2

    Article  Google Scholar 

  • Vaughan N, Lucas EA, Harris S, White PC (2003) Habitat associations of European hares Lepus europaeus in England and Wales: implications for farmland management. Journal of Applied Ecology 40:163–175

    Article  Google Scholar 

  • Wandeler P, Funk SM, Largiader C, Gloor S, Breitenmoser U (2003) The city-fox phenomenon: genetic consequences of a recent colonization of urban habitat. Molecular Ecology 12:647–656

    Article  CAS  PubMed  Google Scholar 

  • Weterings MJ, Zaccaroni M, van der Koore N, Zijlstra LM, Kuipers HJ, van Langevelde F, van Wieren SE (2016) Strong reactive movement response of the medium-sized European hare to elevated predation risk in short vegetation. Animal Behaviour 115:107–114

    Article  Google Scholar 

  • Wilmshurst JF, Fryxell JM, Hudsonb RJ (1995) Forage quality and patch choice by wapiti (Cervus elaphus). Behavioral Ecology 6:209–217

    Article  Google Scholar 

  • Wincentz Jensen T-L (2009) Identifying causes for population decline of brown hare (Lepus europaeus) in agricultural landscapes in Denmark Unpublished PhD thesis, NERI, Aarhus University, Denmark

  • Wine S, Gagné SA, Meentemeyer RK (2015) Understanding human–coyote encounters in urban ecosystems using citizen science data: what do socioeconomics tell us? Environ Manag 55:159–170

    Article  Google Scholar 

  • Zellweger-Fischer J, Kéry M, Pasinelli G (2011) Population trends of brown hares in Switzerland: the role of land-use and ecological compensation areas. Biological conservation 144:1364–1373

    Article  Google Scholar 

  • Zuur A, Ieno E, Walker N, Saveliev A, Smith G (2009) Mixed effects models and extensions in ecology with R. Gail M, Krickeberg K, Samet JM, Tsiatis A, Wong W, editors New York, NY: Spring Science and Business Media

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods in ecology and evolution 1:3–14

    Article  Google Scholar 

Download references

Acknowledgements

We thank Anders Fedder Kristensen, Carsten Swayne Storgaard, David Bækby Houborg, Emma Kaczmar, Hanne Juel Christiansen, Jonas Robert Andersen, and Mathias Damholt for assistance with fieldwork. Further, we thank the Danish Hunters Association for support and an anonymous reviewer for constructive feedback. We are grateful for economical funding form the Danish Environmental Agency.

Author information

Authors and Affiliations

Authors

Contributions

Martin Mayer: Conceptualization; Data collection; Formal analysis; Methodology; Visualization; Writing - original draft. Peter Sunde: Funding acquisition; Methodology; Project administration; Writing - review & editing.

Corresponding author

Correspondence to Martin Mayer.

Ethics declarations

Conflict of interest

The authors declare no competing financial, personal or other conflict of interests.

Electronic supplementary material

ESM 1

(DOCX 1967 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayer, M., Sunde, P. Colonization and habitat selection of a declining farmland species in urban areas. Urban Ecosyst 23, 543–554 (2020). https://doi.org/10.1007/s11252-020-00943-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-020-00943-1

Keywords

Navigation