Skip to main content
Log in

Media depth influences Sedum green roof establishment

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Species selection and initial establishment of plants is critical for long term survival and health of green roofs. Plants that can withstand harsh environmental conditions and provide rapid coverage on extensive green roofs can reduce erosion, limit weed invasion, and provide a more aesthetically pleasing roof to satisfy customers. This study evaluated the effect of green roof substrate depth on initial establishment of 12 Sedum species in a Midwestern US climate. Plugs of 12 Sedum species were planted on 8 June 2005 and evaluated bi-weekly until first frost for absolute cover (AC) using a stainless steel point-frame transect. Most species exhibited greater growth and coverage at a depth of 7.0 and 10.0 cm relative to 4.0 cm. AC was highest for Sedum sarmentosum at all depths, but this species may be too aggressive. Other suitable species include Sedum floriferum, Sedum stefco, and Sedum spurium ‘John Creech’. In general, species that are less suitable are Sedum ‘Angelina’, Sedum cauticola ‘Lidakense’, Sedum ewersii, Sedum ochroleucum, and Sedum reflexum ‘Blue Spruce’. For the species tested, a minimum of 7.0 cm is highly recommended. With shallower substrates, S. sarmentosum and S. stefco will provide the fastest coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ASTM E 2400 (2006) Standard guide for selection, installation, and maintenance of plants for green roof systems. ASTM International, West Conshohocken

    Google Scholar 

  • Boivin M, Lamy M, Gosselin A, Dansereau B (2001) Effect of artificial substrate depth on freezing injury of six herbaceous perennials grown in a green roof system. HortTechnology 11(3):409–412

    Google Scholar 

  • Bouma TJ, Nielsen KL, Eissenstat DM, Lynch JP (1997) Estimating respiration of roots in soil: Interactions with soil CO2, soil temperature and soil water content. Plant Soil 195(2):221–232

    Article  CAS  Google Scholar 

  • Bouyoucos GJ (1962) Hydrometer method improved for making particle size analysis of soils. Agron J 54:464–465

    Google Scholar 

  • Cushman JC (2001) Crassulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiol 127:1439–1448

    Article  PubMed  CAS  Google Scholar 

  • Durhman A, Rowe DB, Rugh CL (2006) Effect of watering regimen on chlorophyll fluorescence and growth of selected green roof plant taxa. HortScience 41(7):1623–1628

    Google Scholar 

  • Durhman AK, Rowe DB, Rugh CL (2007) Effect of substrate depth on initial coverage, and survival of 25 succulent green roof plant taxa. HortScience 42(3):588–595

    Google Scholar 

  • Ferguson MH, Howard L, Bloodworth ME (1960) Laboratory methods for evaluation of putting green soil mixtures. USGA J Turf Manage 13(5):30–32

    Google Scholar 

  • FLL (Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau) (1995) Guidelines for the planning, execution and upkeep of green-roof sites. Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau, Bonn

    Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis: Part 1. Physical and mineralogical methods. Monograph Number 9. ASA, Madison, pp 383–411

    Google Scholar 

  • Getter KL, Rowe DB (2006) The role of extensive green roofs in sustainable development. HortScience 41(5):1276–1285

    Google Scholar 

  • Getter KL, Rowe DB (2007) Effect of substrate depth and planting season on Sedum plug survival on green roofs. J Environ Hortic 25(2):95–99

    Google Scholar 

  • Gómez-Campo C (1994) Plantas para la naturación de azoteas: el género Sedum L. Agricultura (Espana) 749:1041–1042

    Google Scholar 

  • Gravatt DA (2003) Crassulacean acid metabolism and survival of asexual propagules of Sedum wrightii. Photosynthetica 41:449–452

    Article  CAS  Google Scholar 

  • Gravatt DA, Martin CE (1992) Comparative ecophysiology of five species of Sedum (Crassulaceae) under well-watered and drought-stressed conditions. Oecologia 92:532–541

    Article  Google Scholar 

  • Green Roofs for Healthy Cities (2007) Final report green roof industry survey 2006. Green Roofs for Healthy Cities, Toronto

    Google Scholar 

  • Kirschstein C (1997) Die dürreresistenz einiger Sedum-arten. Abgeleitet aus der Bedeutung der Wurzelsaugspannung-Teil 1. Stadt und Grün 46(4):252–256

    Google Scholar 

  • Kluge M (1977) Is Sedum acre L. a CAM plant. Oceologia 29:77–83

    Article  Google Scholar 

  • Kluge M, Ting IP (1978) Crassulacean acid metabolism: an ecological analysis. Ecological Studies Series, vol. 30. Springer, Berlin

    Google Scholar 

  • Lassalle F (1998) Wirkung von trockenstreb auf xerophile pflanzen. Stadt und Grün 47(6):437–443

    Google Scholar 

  • Lee KS, Kim J (1994) Changes in crassulacean acid metabolism (CAM) of Sedum plants with special reference to soil moisture conditions. J Plant Biol 37(1):9–15

    CAS  Google Scholar 

  • Liesecke HJ (1998) Das retentionsvermögen von dachbegrünungen. (Water retention capacity of vegetated roofs). Stadt und Grün 47(1):46–53

    Google Scholar 

  • Liesecke HJ (1999) Extensive begrünung bei 5° dachneigung. (Extensive roof greenings on a 5° slope). Stadt und Grün 48(5):337–346

    Google Scholar 

  • Liu K, Minor J (2005) Performance evaluation of an extensive green roof. In: Proc. of 3rd North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Washington, DC. 4–6 May 2005. Cardinal Group, Toronto, pp 385–398

    Google Scholar 

  • Meng Q, Hu W (2005) Roof cooling effect with humid porous medium. Energy Build 37:1–9

    Article  Google Scholar 

  • Monterusso MA, Rowe DB, Rugh CL (2005) Establishment and persistence of Sedum spp. and native taxa for green roof applications. HortScience 40(2):391–396

    Google Scholar 

  • NCR-13 (1998) Recommended chemical soil test procedures for the North Central Region. North Central Regional Publ. 221. Missouri Agric. Exp. Stn., Columbia

    Google Scholar 

  • Prasad PV, Craufurd PQ, Summerfield RJ (2000) Effect of high air and soil temperature on dry matter production, pod yield and yield components of groundnut. Plant Soil 222:231–239

    Article  CAS  Google Scholar 

  • Rowe DB, Monterusso MA, Rugh CL (2005) Evaluation of Sedum species and Michigan native taxa for green roof applications. In: Proc. of 3rd North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Washington, DC. 4–6 May 2005. Cardinal Group, Toronto, pp 469–481

    Google Scholar 

  • Rowe DB, Monterusso MA, Rugh CL (2006a) Assessment of heat-expanded slate and fertility requirements in green roof substrates. HortTechnology 16(3):471–477

    Google Scholar 

  • Rowe DB, Rugh CL, Durhman AK (2006b) Assessment of substrate depth and composition on green roof plant performance. In: Proc. of 4th North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Boston, MA. 11–12 May 2006. Cardinal Group, Toronto

    Google Scholar 

  • Sayed OH, Earnshaw MJ, Cooper M (1994) Growth, water relations, and CAM induction in Sedum album in response to water stress. Biologia Plantarum 36(3):383–388

    Article  CAS  Google Scholar 

  • Simmons M, Gardiner B (2007) The effects of green roofs in a sub-tropical system. In: Proc. Of 4th North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Minneapolis, MN. 29 April – 1 May 2007. The Cardinal Group, Toronto

    Google Scholar 

  • Stephenson R (2002) Sedum: cultivated stonecrop. Timber, Portland

    Google Scholar 

  • Teeri JA, Turner M, Gurevitch J (1986) The response of leaf water potential and crassulacean acid metabolism to prolonged drought in Sedum rubrotinctum. Plant Physiol 81:678–680

    Article  CAS  Google Scholar 

  • Underwood AJ (1998) Experiments in ecology: Their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge

    Google Scholar 

  • VanWoert ND, Rowe DB, Andresen JA, Rugh CL, Fernandez RT, Xiao L (2005a) Green roof stormwater retention: Effects of roof surface, slope, and media depth. J Environ Quality 34(3):1036–1044

    Article  CAS  Google Scholar 

  • VanWoert ND, Rowe DB, Andresen JA, Rugh CL, Xiao L (2005b) Watering regime and green roof substrate design affect Sedum plant growth. HortScience 40(3):659–664

    Google Scholar 

  • Villarreal EL, Bengtsson L (2005) Response of a Sedum green-roof to individual rain events. Ecol Eng 25(1):1–7

    Article  Google Scholar 

  • Waite S (2000) Statistical ecology in practice: A guide to analyzing environmental and ecological field data. Prentice Hall, Harlow

    Google Scholar 

  • White JW, Snodgrass E (2003) Extensive green roof plant selection and characteristics. In: Proc. of 1st North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Chicago. 29–30 May 2003. Cardinal Group, Toronto, pp 166–176

    Google Scholar 

  • Wilson WJ (1960) Inclined point quadrats. New Phytologist 59(1):1–8

    Article  Google Scholar 

  • Wu Y, Cosgrove D, Davies B, Sharp B (2000) Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. J Exp Bot 51(300):1543–1553

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by Ford Motor Company, Dearborn, MI; ChristenDETROIT Roofing Contractors, Detroit, MI; XeroFlor America LLC, Durham, NC; the Michigan Agricultural Experiment Station; and Emory Knoll Farms, Street, MD, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin L. Getter.

Additional information

This paper is a portion of a M.S. Thesis submitted by K.L. Getter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Getter, K.L., Rowe, D.B. Media depth influences Sedum green roof establishment. Urban Ecosyst 11, 361–372 (2008). https://doi.org/10.1007/s11252-008-0052-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-008-0052-0

Keywords

Navigation