Skip to main content
Log in

Influence of Base oil Polarity on the Tribological Performance of Surface-Active Engine Oil Additives

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Friction, wear and tribofilm growth of organic friction modifiers (glycerol monooleate and oleamide), anti-wear additive (ZDDP) and binary additive system comprising the organic friction modifiers and ZDDP were studied in polyalphaolefin (PAO) and ester oil. The mechanisms underlying base oil polarity-dependent frictional performance of the OFM and AW additives at high temperature (140 ℃), either singly or in combination, were investigated in the light of chemical composition analysis of the tribofilms post friction measurements using energy dispersive X-ray spectroscopy (EDX), static and dynamic time-of-flight secondary ion mass spectrometry (ToF–SIMS). Depending on the rubbing conditions, the boundary friction coefficient of the binary additive systems was found to be either lower than that of individual additives or to lay between the values for the individual additives. Chemical composition analysis of the tribofilms indicated that the nature of base oil controlled interactions between ZDDP and OFM and consequently adsorption and reactive tribofilm formation in the boundary lubrication layer. Surface roughness and wear scar width measured post tribological tests using 3D surface profiler showed improved wear performance in both PAO and ester-based additive formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang, Y., Wei, L., Hu, H., Zhao, Z., Huang, Z., Huang, A., et al.: Tribological properties of nano cellulose fatty acid esters as ecofriendly and effective lubricant additives. Cellulose 25, 3091–3103 (2018)

    Article  CAS  Google Scholar 

  2. Richardson, D.E.: Review of power cylinder friction for diesel engines. J. Eng. Gas Turbines Power 122, 506–519 (2000)

    Article  Google Scholar 

  3. Ewen, J.P., Gattinoni, C., Morgan, N., Spikes, H.A., Dini, D.: Nonequilibrium molecular dynamics simulations of organic friction modifiers adsorbed on iron oxide surfaces. Langmuir 32, 4450–4463 (2016)

    Article  CAS  Google Scholar 

  4. Jahanmir, S., Beltzer, M.: Effect of additive molecular structure on friction coefficient and adsorption. J. Tribol. 108, 109–116 (1986)

    Article  CAS  Google Scholar 

  5. Levine, O., Zisman, W.A.: Physical properties of monolayers adsorbed at the solid–air interface. I. Friction and wettability of aliphatic polar compounds and effect of halogenation. J. Phys. Chem. 61, 1068–1077 (1957)

    Article  CAS  Google Scholar 

  6. Beltzer, M., Jahanmir, S.: Effect of additive molecular structure on friction. Lubr. Sci. 1, 3–26 (1988)

    Article  CAS  Google Scholar 

  7. Ratoi, M., Anghel, V., Bovington, C., Spikes, H.: Mechanisms of oiliness additives. Tribol. Int. 33, 241–247 (2000)

    Article  CAS  Google Scholar 

  8. Allen, C., Drauglis, E.: Boundary layer lubrication: monolayer or multilayer. Wear 14, 363–384 (1969)

    Article  CAS  Google Scholar 

  9. Anghel, V., Bovington, C., Spikes, H.A.: Thick-boundary-film formation by friction modifier additives. Lubr. Sci. 11, 313–335 (1999)

    Article  CAS  Google Scholar 

  10. Cyriac, F., Tee, X.Y., Poornachary, S.K., Chow, P.S.: Influence of structural factors on the tribological performance of organic friction modifiers. Friction 9, 380–400 (2021)

    Article  CAS  Google Scholar 

  11. Kenbeek, D., Buenemann, T., Rieffe, H.: Review of organic friction modifiers-contribution to fuel efficiency? SAE Technical Paper, Place SAE Technical Paper (2000)

  12. Taylor, R.I.: Tribology and energy efficiency: from molecules to lubricated contacts to complete machines. Faraday Discuss. 156, 361–382 (2012)

    Article  CAS  Google Scholar 

  13. Kenbeck, D., Bunemann, T.: Organic friction modifiers. In: Lubricant Additives: Chemistry and Applications, vol. 2 (2009)

  14. Guegan, J., Southby, M., Spikes, H.: Friction modifier additives, synergies and antagonisms. Tribol. Lett. 67, 83 (2019)

    Article  CAS  Google Scholar 

  15. Miklozic, K.T., Forbus, T.R., Spikes, H.A.: Performance of friction modifiers on ZDDP-generated surfaces. Tribol. Trans. 50, 328–335 (2007)

    Article  CAS  Google Scholar 

  16. Campen, S., Green, J., Lamb, G., Atkinson, D., Spikes, H.: On the increase in boundary friction with sliding speed. Tribol. Lett. 48, 237–248 (2012)

    Article  CAS  Google Scholar 

  17. Unnikrishnan, R., Jain, M., Harinarayan, A., Mehta, A.: Additive–additive interaction: an XPS study of the effect of ZDDP on the AW/EP characteristics of molybdenum based additives. Wear 252, 240–249 (2002)

    Article  CAS  Google Scholar 

  18. Dawczyk, J., Morgan, N., Russo, J., Spikes, H.: Film thickness and friction of ZDDP tribofilms. Tribol. Lett. 67, 34 (2019)

    Article  CAS  Google Scholar 

  19. Okubo, H., Tadokoro, C., Sasaki, S.: Tribological properties of a tetrahedral amorphous carbon (ta-C) film under boundary lubrication in the presence of organic friction modifiers and zinc dialkyldithiophosphate (ZDDP). Wear 332, 1293–1302 (2015)

    Article  CAS  Google Scholar 

  20. Aktary, M., McDermott, M.T., McAlpine, G.A.: Morphology and nanomechanical properties of ZDDP antiwear films as a function of tribological contact time. Tribol. Lett. 12, 155–162 (2002)

    Article  CAS  Google Scholar 

  21. Castle, R., Bovington, C.: The behaviour of friction modifiers under boundary and mixed EHD conditions. Lubr. Sci. 15, 253–263 (2003)

    Article  CAS  Google Scholar 

  22. Ratoi, M., Niste, V.B., Alghawel, H., Suen, Y.F., Nelson, K.: The impact of organic friction modifiers on engine oil tribofilms. RSC Adv. 4, 4278–4285 (2014)

    Article  CAS  Google Scholar 

  23. Massoud, T., De Matos, R.P., Le Mogne, T., Belin, M., Cobian, M., Thiébaut, B., et al.: Effect of ZDDP on lubrication mechanisms of linear fatty amines under boundary lubrication conditions. Tribol. Int. 141, 105954 (2020)

    Article  CAS  Google Scholar 

  24. Ratoi, M., Niste, V.B., Zekonyte, J.: WS 2 nanoparticles–potential replacement for ZDDP and friction modifier additives. RSC Adv. 4, 21238–21245 (2014)

    Article  CAS  Google Scholar 

  25. Dawczyk, J., Russo, J., Spikes, H.: Ethoxylated amine friction modifiers and ZDDP. Tribol. Lett. 67, 106 (2019)

    Article  CAS  Google Scholar 

  26. Dawczyk, J.U.: The effect of organic friction modifiers on ZDDP tribofilm. (2018).

  27. Dobrenizki, L., Tremmel, S., Wartzack, S., Hoffmann, D.C., Brögelmann, T., Bobzin, K., et al.: Efficiency improvement in automobile bucket tappet/camshaft contacts by DLC coatings–Influence of engine oil, temperature and camshaft speed. Surf. Coat. Technol. 308, 360–373 (2016)

    Article  CAS  Google Scholar 

  28. Taylor, L., Spikes, H.: Friction-enhancing properties of ZDDP antiwear additive: part I—friction and morphology of ZDDP reaction films. Tribol. Trans. 46, 303–309 (2003)

    Article  CAS  Google Scholar 

  29. Tasdemir, H.A., Wakayama, M., Tokoroyama, T., Kousaka, H., Umehara, N., Mabuchi, Y., et al.: Ultra-low friction of tetrahedral amorphous diamond-like carbon (ta-C DLC) under boundary lubrication in poly alpha-olefin (PAO) with additives. Tribol. Int. 65, 286–294 (2013)

    Article  CAS  Google Scholar 

  30. Tasdemir, H.A., Wakayama, M., Tokoroyama, T., Kousaka, H., Umehara, N., Mabuchi, Y., et al.: Wear behaviour of tetrahedral amorphous diamond-like carbon (ta-C DLC) in additive containing lubricants. Wear 307, 1–9 (2013)

    Article  CAS  Google Scholar 

  31. Okubo, H., Watanabe, S., Tadokoro, C., Sasaki, S.: Effects of concentration of zinc dialkyldithiophosphate on the tribological properties of tetrahedral amorphous carbon films in presence of organic friction modifiers. Tribol. Int. 94, 446–457 (2016)

    Article  CAS  Google Scholar 

  32. Zhmud, B., Roegiers, M.: New base oils pose a challenge for solubility and lubricity. Tribol. Lubric. Technol. 65, 34 (2009)

    CAS  Google Scholar 

  33. Tomala, A., Naveira-Suarez, A., Gebeshuber, I.C., Pasaribu, R.: Effect of base oil polarity on micro and nanofriction behaviour of base oil+ ZDDP solutions. Tribology 3, 182–188 (2009)

    CAS  Google Scholar 

  34. Naveira Suarez, A., Grahn, M., Pasaribu, R., Larsson, R.: The influence of base oil polarity on the tribological performance of zinc dialkyl dithiophospate additives. Tribol. Int. 43, 2268–2278 (2010)

    Article  CAS  Google Scholar 

  35. Naveira-Suarez, A., Tomala, A., Grahn, M., Zaccheddu, M., Pasaribu, R., Larsson, R.: The influence of base oil polarity and slide–roll ratio on additive-derived reaction layer formation. Proc. Inst. Mech. Eng. J 225, 565–576 (2011)

    Article  CAS  Google Scholar 

  36. Cyriac, F., Yi, T.X., Poornachary, S.K., Chow, P.S.: Effect of temperature on tribological performance of organic friction modifier and anti-wear additive: insights from friction, surface (ToF-SIMS and EDX) and wear analysis. Tribol. Int. 157, 106896 (2021)

    Article  CAS  Google Scholar 

  37. Dowson, D., Jones, D.: Lubricant entrapment between approaching elastic solids. Nature 214, 947–948 (1967)

    Article  Google Scholar 

  38. Kaneta, M., Ozaki, S., Nishikawa, H., Guo, F.: Effects of impact loads on point contact elastohydrodynamic lubrication films. Proc. Inst. Mech. Eng. J 221, 271–278 (2007)

    Article  Google Scholar 

  39. Wu, N., Zong, Z., Fei, Y., Ma, J., Guo, F.: Thermal degradation of aviation synthetic lubricating base oil. Pet. Chem. 58, 250–257 (2018)

    Article  CAS  Google Scholar 

  40. Bhushan, B.: Frictional Heating and Contact Temperatures. Modern Tribology Handbook, Two Volume Set, pp. 257–294. CRC Press, Place CRC Press (2000)

  41. Bos, J., Moes, H.: Frictional Heating of Tribological Contacts. ASME. J . Tribol. 117(1), 171–177 (1995)

  42. Feng, X., Hu, Y., Xia, Y.: Tribological research of leaf-surface wax derived from plants of Pinaceae. Lubr. Sci. 31, 1–10 (2019)

    Article  CAS  Google Scholar 

  43. Murase, A., Ohmori, T.: ToF-SIMS analysis of friction surfaces tested with mixtures of a phosphite and a friction modifier. Surf. Interface Anal. 31, 232–241 (2001)

    Article  Google Scholar 

  44. Murase, A., Ohmori, T.: ToF-SIMS analysis of model compounds of friction modifier adsorbed onto friction surfaces of ferrous materials. Surf. Interface Anal. 31, 191–199 (2001)

    Article  CAS  Google Scholar 

  45. Kano, M., Yasuda, Y., Okamoto, Y., Mabuchi, Y., Hamada, T., Ueno, T., et al.: Ultralow friction of DLC in presence of glycerol mono-oleate (GNO). Tribol. Lett. 18, 245–251 (2005)

    Article  CAS  Google Scholar 

  46. Taylor, L.J., Spikes, H.A.: Friction-enhancing properties of ZDDP antiwear additive: part II—influence of ZDDP reaction films on EHD lubrication. Tribol. Trans. 46, 310–314 (2003)

    Article  CAS  Google Scholar 

  47. Campen, S.M.: Fundamentals of organic friction modifier behaviour. (2012).

  48. Tang, Z., Li, S.: A review of recent developments of friction modifiers for liquid lubricants (2007–present). Curr. Opin. Solid State Mater. Sci. 18, 119–139 (2014)

    Article  CAS  Google Scholar 

  49. Bradley-Shaw, J.L., Camp, P.J., Dowding, P.J., Lewtas, K.: Self-assembly and friction of glycerol monooleate and its hydrolysis products in bulk and confined non-aqueous solvents. PCCP 20, 17648–17657 (2018)

    Article  CAS  Google Scholar 

  50. Murgia, S., Caboi, F., Monduzzi, M., Ljusberg-Wahren, H., Nylander, T.: Acyl migration and hydrolysis in monoolein-based systems. In: Lipid and Polymer-Lipid Systems, pp. 41–46. Springer, Place Springer (2002)

  51. Ueda, M., Kadiric, A., Spikes, H.: On the crystallinity and durability of ZDDP tribofilm. Tribol. Lett. 67, 123 (2019)

    Article  CAS  Google Scholar 

  52. Tripaldi, G., Vettor, A., Spikes, H.: Friction behaviour of ZDDP films in the mixed, boundary/EHD regime. SAE Trans. 1819–1830 (1996)

  53. Bell, J., Delargy, K.: The composition and structure of model zinc dialkyldithiophosphate anti-wear films. Proc. Eurotrib 93, 328 (1993)

    Google Scholar 

  54. Bell, J., Delargy, K., Seeney, A.: Paper IX (ii) the Removal of Substrate Material Through Thick Zinc Dithiophosphate Anti-wear Films. Tribology Series, pp. 387–396. Elsevier, Place Elsevier (1992)

  55. Taylor, L., Dratva, A., Spikes, H.: Friction and wear behavior of zinc dialkyldithiophosphate additive. Tribol. Trans. 43, 469–479 (2000)

    Article  CAS  Google Scholar 

  56. Cen, H., Morina, A., Neville, A.: Effect of base oil polarity on the micropitting behaviour in rolling-sliding contacts. Lubr. Sci. 31, 113–126 (2019)

    Article  CAS  Google Scholar 

  57. Mabuchi, Y., Kano, M., Ishikawa, T., Sano, A., Wakizono, T.: The effect of ZDDP additive in CVT fluid on increasing friction coefficient between belt elements and pulleys of belt-drive continuously variable transmissions. Tribol. Trans. 43, 229–236 (2000)

    Article  CAS  Google Scholar 

  58. Koike, A., Yoneya, M.: Chain length effects on frictional behavior of confined ultrathin films of linear alkanes under shear. J. Phys. Chem. B 102, 3669–3675 (1998)

    Article  CAS  Google Scholar 

  59. Lee, C., Li, Q., Kalb, W., Liu, X.-Z., Berger, H., Carpick, R.W., et al.: Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010)

    Article  CAS  Google Scholar 

  60. Lee, C., Wei, X., Li, Q., Carpick, R., Kysar, J.W., Hone, J.: Elastic and frictional properties of graphene. Phys. Status Solidi (b) 246, 2562–2567 (2009)

    Article  CAS  Google Scholar 

  61. Crobu, M., Rossi, A., Mangolini, F., Spencer, N.D.: Chain-length-identification strategy in zinc polyphosphate glasses by means of XPS and ToF-SIMS. Anal. Bioanal. Chem. 403, 1415–1432 (2012)

    Article  CAS  Google Scholar 

  62. Minfray, C., Martin, J., De Barros, M., Le Mogne, T., Kersting, R., Hagenhoff, B.: Chemistry of ZDDP tribofilm by ToF-SIMS. Tribol. Lett. 17, 351–357 (2004)

    Article  CAS  Google Scholar 

  63. Pidduck, A., Smith, G.: Scanning probe microscopy of automotive anti-wear films. Wear 212, 254–264 (1997)

    Article  CAS  Google Scholar 

  64. Mikhin, N., Lyapin, K.: Hardness dependence of the coefficient of friction. Soviet Phys. J. 13, 317–321 (1970)

    Article  Google Scholar 

  65. Brow, R.K., Tallant, D.R., Myers, S.T., Phifer, C.C.: The short-range structure of zinc polyphosphate glass. J. Non-Cryst. Solids 191, 45–55 (1995)

    Article  CAS  Google Scholar 

  66. Martin, J.M., Grossiord, C., Le Mogne, T., Bec, S., Tonck, A.: The two-layer structure of Zndtp tribofilms: Part I: AES, XPS and XANES analyses. Tribol. Int. 34, 523–530 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Inez Kwek for helping with SEM-EDX measurements and Xing Zhenxiang, Zheng Rongyan (IMRE, A*STAR) for the ToF-SIMS measurements. They gratefully acknowledge Croda Singapore Pte Ltd for generously providing the ester oil, ZDDP and GMO, and Chevron Phillips for providing PAO for this research work.

Funding

The study was funded by the Agency for Science, Technology and Research (A*STAR) under the Specialty Chemicals Advanced Manufacturing and Engineering IAF-PP research grant (Grant No. A1786a0026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Febin Cyriac.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cyriac, F., Yi, T.X., Poornachary, S.K. et al. Influence of Base oil Polarity on the Tribological Performance of Surface-Active Engine Oil Additives. Tribol Lett 69, 87 (2021). https://doi.org/10.1007/s11249-021-01463-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01463-5

Keywords

Navigation