Skip to main content
Log in

On the Increase in Boundary Friction with Sliding Speed

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

During the last sixty years there have been consistent reports in the literature that in the boundary lubrication regime, some, but not all, solutions of organic friction modifiers give extremely low friction at very low sliding speed, that then increases linearly with the logarithm of sliding speed. This article first reviews some previous studies that show this phenomenon and describes the main mechanisms proposed to explain it. New friction-sliding speed data are then presented, which show that an increase in friction with sliding speed occurs with saturated alkyl chain organic friction modifiers but not with unsaturated chain, oleyl-based ones, at the concentrations studied. It is, however, shown that elaidic acid, the trans-isomer of oleic acid gives friction that increases with sliding speed. A key difference between these two compounds is that the cis arrangement of carbon–carbon bonds around the double bond of oleic acid means that the molecule cannot easily adopt a linear configuration, while elaidic acid can. This suggests that the ability of an organic friction modifier to produce friction that increases with sliding speed originates from its ability to form close-packed layers on steel surfaces. Importantly, even though oleyl derivatives do not show friction that increases with sliding speed, they still reduce friction quite significantly over the sliding speed range studied, although to a lesser extent than their saturated analogues, especially at low sliding speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sprague, S.R., Cunningham, R.G.: Chemical additives control frictional characteristics of lubricants. Ind. Eng. Chem. 51, 1047–1105 (1959)

    Article  CAS  Google Scholar 

  2. Rodgers, J.J., Haviland, M.L.: Friction of transmission clutch materials as affected by fluids, additives, and oxidation. SAE Techn. Paper 600178 (1960)

  3. Haviland, M.L., Rodgers, J.J.: Friction characteristics of automatic transmission fluids as related to transmission operation. Lubr. Eng. 17, 110–117 (1961)

    Google Scholar 

  4. Morris, J.R., Schlicht, R.C., Adams, C.W., Lawrence, J.A.: Non-squawking automatic transmission fluid. US Patent 3017381 (1962)

  5. Doyle, W.P., Henry, C.J., Thomas, P.R.: A fundamental study of antisquawk additives. SAE Techn. Paper 630440 (1963)

  6. Haviland, M.L., Goodwin, M.C., Rodgers, J.J.: Friction characteristics of controlled-slip differential lubricants. SAE Techn. Paper 660778 (1966)

  7. Albertson, C.E.: The mechanisms of anti-squawk additive behavior in automatic transmission fluids. ASLE Trans. 6, 300–315 (1963)

    Article  Google Scholar 

  8. Dorinson, A.: The slow speed frictional behavior of some lubricant additive type-substances. ASLE Trans. 13, 215–224 (1970)

    Article  CAS  Google Scholar 

  9. Briscoe, B.J., Evans, D.C.B., Tabor, D.: The influence of contact pressure and saponification on the sliding behavior of stearic acid monolayers. J. Coll. Interf. Sci. 61, 9–13 (1977)

    Article  CAS  Google Scholar 

  10. Briscoe, B.J., Evans, D.C.B.: The shear properties of Langmuir–Blodgett layers. Proc. R. Soc. Lond. A 380, 389–407 (1982)

    Article  CAS  Google Scholar 

  11. Chugg, K.J., Chaudhri, M.M.: Boundary lubrication and shear properties of thin solid films of dioctadecyl dimethyl ammonium chloride (TA100). J. Phys. D Appl. Phys. 26, 1993–2000 (1993)

    Article  CAS  Google Scholar 

  12. Norihisa, T., Itoigawa, F., Nakamura, T.: Study on velocity-dependent property of friction in boundary lubrication under low contacting pressure condition (Part I). Relationship between additives and velocity-dependent property of friction. J. Jpn. Soc. Tribologists 53, 682–688 (2008)

    Google Scholar 

  13. Norihisa T., Itoigawa F., Nakamura T. And Ogawa T.: Study on velocity-dependent property of friction in boundary lubrication under low contacting pressure condition (Part 2). Consideration into mechanism of velocity-dependent property of friction with oil containing alkyl acid phosphate. J. Jpn. Soc. Tribologists 53, 689–696 (2008)

    Google Scholar 

  14. Ingram, M., Noles, J., Watts, R., Harris, S., Spikes, H.A.: Frictional properties of automatic transmission fluids: Part 1: measurement of friction-sliding speed behaviour. Trib. Trans. 54, 145–153 (2011)

    Article  CAS  Google Scholar 

  15. Ingram, M., Noles, J., Watts, R., Harris, S., Spikes, H.A.: Frictional properties of automatic transmission fluids: Part 2: origins of friction-sliding speed behaviour. Trib. Trans. 54, 154–167 (2011)

    Article  CAS  Google Scholar 

  16. Topolovec-Miklovic, K., Forbus, T.R., Spikes, H.: Film forming and friction properties of overbased calcium sulphonates. Tribol. Lett. 29, 33–44 (2008)

    Article  Google Scholar 

  17. Aoki, S., Suzuki, A., Masuko, M.: Comparison of sliding speed dependency of friction between steel surfaces lubricated with several ZnDTPs with different hydrocarbon moieties. Proc. I. Mech. E. 220 Part J: J. Eng. Tribol., 343–351 (2006)

  18. Hoshino, K., Yagashita, K., Tagawa, K., Spikes, H.A.: Tribological properties of sulphur-free antiwear additives zinc dialkylphosphates (ZDPs). SAE 2011-01-2132, JSAE 20119056 (2011)

  19. Kiely, J.D., Houston, J.E.: Contact hysteresis and friction of alkanethiol self-assembled monolayers on gold. Langmuir 15, 4513–4519 (1999)

    Article  CAS  Google Scholar 

  20. Brewer, N.J., Beake, B.D., Leggett, G.J.: Friction force microscopy of self-assembled monolayers: influence of adsorbate alkyl chain length, terminal group chemistry, and scan velocity. Langmuir 17, 1970–1974 (2001)

    Article  CAS  Google Scholar 

  21. Tambe, N.S., Bhushan, B.: Friction model for the velocity dependence of nanoscale friction. Nanotechnology 16, 2309–2342 (2005)

    Article  Google Scholar 

  22. Chen, J., Ratera, I., Park, J.Y., Salmeron, M.: Velocity dependence of friction and hydrogen bonding effects. Phys. Rev. Lett. 96(236102), 1–4 (2006)

    CAS  Google Scholar 

  23. Drummond, C., Israelachvili, J., Richetti, P.: Friction between two weakly adhering boundary lubricated surfaces in water. Phys. Rev. E 67(066110), 1–16 (2003)

    Google Scholar 

  24. Glosli, J.N., McClelland, G.M.: Molecular dynamics study of sliding friction of ordered organic monolayers. Phys. Rev. Lett. 70, 1960–1963 (1993)

    Article  CAS  Google Scholar 

  25. Kapila, V., Deymier, P.A., Raghavan, S.: Molecular dynamics simulations of friction between alkylsilane monolayers. Modelling Simul. Mater. Sci. Eng. 14, 283–297 (2006)

    Article  CAS  Google Scholar 

  26. Kong, Y.C., Tildesley, D.J., Alejandre, J.: The molecular dynamics simulation of boundary-layer lubrication. Mol. Phys. 92, 7–18 (1997)

    CAS  Google Scholar 

  27. Chandross, M., Grest, G.S., Stevens, M.J.: Friction between alkylsilane monolayers: molecular simulation of ordered monolayers. Langmuir 18, 8392–8399 (2002)

    Article  CAS  Google Scholar 

  28. Zhang, L., Leng, Y., Jiang, S.: Tip-based hybrid simulation study of frictional properties of self-assembled monolayers: effects of chain length, terminal group, scan direction, and scan velocity. Langmuir 19, 9742–9747 (2003)

    Article  CAS  Google Scholar 

  29. Chernyak, Yu B., Leonov, A.I.: On the theory of the adhesive friction of elastomers. Wear 109, 105–137 (1986)

    Article  Google Scholar 

  30. Heslot, F., Baumberger, T., Perrin, B.: Creep, stick-slip, and dry-friction dynamics: experiments and a heuristic model. Phys. Rev. E 49, 4973–4988 (1994)

    Article  Google Scholar 

  31. Ruina, A.: Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370 (1983)

    Article  Google Scholar 

  32. Eyring, H.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)

    Article  CAS  Google Scholar 

  33. Shallamach, A.: The velocity and temperature dependence of rubber friction. Proc. Phys. Soc. B 66, 386–392 (1953)

    Google Scholar 

  34. Shallamach, A.: A theory of dynamic rubber friction. Wear 6, 375–382 (1963)

    Article  Google Scholar 

  35. Persson, B.N.J.: Theory of friction: stress domains, relaxation, and creep. Phys. Rev. B 51, 13568–13585 (1995)

    Article  CAS  Google Scholar 

  36. Mazuyer, D., Cayer-Barrioz, J., Tonck, A., Jarnias, F.: Friction dynamics of confined weakly adhering boundary layers. Langmuir 24, 3857–3866 (2008)

    Article  CAS  Google Scholar 

  37. Jahanmir, S., Beltzer, M.: Effect of additive molecular structure on friction coefficient and adsorption. Trans. ASME. J. Tribol 108, 109–116 (1986)

    Article  CAS  Google Scholar 

  38. Jahanmir, S., Beltzer, M.: An adsorption model for friction in boundary lubrication. ASLE Trans. 29, 423–430 (1986)

    Article  CAS  Google Scholar 

  39. Arnold, T., Clarke, S.M.: Thermodynamic investigation of the adsorption of amides on graphite from their liquids and binary mixtures. Langmuir 24, 3325–3335 (2008)

    Article  CAS  Google Scholar 

  40. Hamrock, B.J., Dowson, D.: Ball bearing lubrication: the elastohydrodynamics of elliptical contacts. Publ. Wiley, New York (1981)

    Google Scholar 

  41. Ruths, M., Lundgren, S., Danerlov, K., Persson, K.: Friction of fatty acids in nanometer-sized contacts of different adhesive strength. Langmuir 24, 1509–1516 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Castrol Ltd, UK for supporting the study described in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh Spikes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campen, S., Green, J., Lamb, G. et al. On the Increase in Boundary Friction with Sliding Speed. Tribol Lett 48, 237–248 (2012). https://doi.org/10.1007/s11249-012-0019-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-0019-4

Keywords

Navigation