Skip to main content
Log in

Neutralization Mechanism of Acetic Acid by Overbased Colloidal Nanoparticles

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The neutralization reaction mechanism of acetic acid by fully formulated lubricant oil is discussed in this paper. The video analysis of acetic-acid droplets in oil phase indicates that neutralization exists simultaneously on the oil–acid interface and bulk oil phase during the droplet shrinkage. This behavior is different from the one exhibited by sulfuric acid, which is insoluble in base oil and its neutralization by overbased lubricant occurs exclusively at the oil–acid interface. Besides, FTIR and NMR analyses show the neutralization of acetic acid as an instantaneous process, and almost all of the dissolved acetic acids in the bulk are eventually neutralized. Therefore, a two-mode-mechanism, including both interfacial and bulk reaction, is proposed for the neutralization of acetic acid by overbased nanoparticles. At the end, tribological behavior of sulfuric acid and acetic-acid neutralization products is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Galsworthy, J., Hammond, S., Hone, D.: Oil-soluble colloidal additives. Curr. Opin. Colloid Interface 5(5), 274–279 (2000)

    Article  Google Scholar 

  2. Mitsutake, S., Ono, S., Maekawa, K., Takahashi, F., Deguchi, A.: Lubrication of cylinder liners and piston rings of low-speed marine diesel engines. Mitsubishi Tech. Rev. 24(2), 87–93 (1987)

    Google Scholar 

  3. Wilbur, C.T., Wight, D.: Pounder’s Marine Diesel Engines and Gas Turbines. Elsevier, Amsterdam (2013)

    Google Scholar 

  4. Hone, D.C., Robinson, B.H., Steytler, D.C., Glyde, R.W., Galsworthy, J.R.: Mechanism of acid neutralization by overbased colloidal additives in hydrocarbon media. Langmuir 16(2), 340–346 (2000)

    Article  Google Scholar 

  5. Hudson, L., Eastoe, J., Dowding, P.: Nanotechnology in action: Overbased nanodetergents as lubricant oil additives. Adv. Colloid Interface 123, 425–431 (2006)

    Article  Google Scholar 

  6. Wu, R.C., Papadopoulos, K.D., Campbell, C.B.: Visualization test for neutralization of acids by marine cylinder lubricants. AIChE J. 45(9), 2011–2017 (1999)

    Article  Google Scholar 

  7. Fu, J., Papadopoulos, K.D., Lu, Y., Campbell, C.B.: Ostwald ripening: a decisive cause of cylinder corrosive wear. Tribol. Lett. 27(1), 21–24 (2007)

    Article  Google Scholar 

  8. Akiyama, K., Masunaga, K., Kado, K., Yoshioka, T.: Cylinder wear mechanism in an EGR-equipped diesel engine and wear protection by the engine oil. SAE Technical Paper 872158 (1987)

  9. Sudarshan, T., Bhaduri, S.: Wear in cylinder liners. Wear 91(3), 269–279 (1983)

    Article  Google Scholar 

  10. Jones, B., Mead, G., Steevens, P.: The effects of E20 on plastic automotive fuel system components. Minnesota Center Automotive Research Minnesota at State University, 11 (2008)

  11. Hanson, N., Devens, T., Rohde, C., Larson, A., Mead, G., Steevens, P., Jones, B.: The effects of E20 on automotive fuel pumps and sending units. Minnesota Center Automotive Research Minnesota at State University, 12 (2008)

  12. Renewable Fuels Association.: Accelerating idustry innovation: 2012 e Industry outlook. Renewable Fuels Association, Washington, DC (2012)

    Google Scholar 

  13. Kawamura, K., Kaplan, I.R.: Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air. Environ. Sci. Technol. 21(1), 105–110 (1987)

    Article  Google Scholar 

  14. Souza, S.R., Vasconcellos, P.C., Carvalho, L.R.: Low molecular weight carboxylic acids in an urban atmosphere: winter measurements in Sao Paulo City Brazil. Atmos. Environ. 33(16), 2563–2574 (1999)

    Article  Google Scholar 

  15. Chebbi, A., Carlier, P.: Carboxylic acids in the troposphere, occurrence, sources, and sinks: a review. Atmos. Environ. 30(24), 4233–4249 (1996)

    Article  Google Scholar 

  16. Agarwal, A.K.: Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energ. Combust. 33(3), 233–271 (2007)

    Article  Google Scholar 

  17. Corradi, M., Bomparola, R.: A lubricating oil composition comprising a corrosion inhibitor. Patent No. EP 2692839 A1 (2014)

  18. Intermediate-level ethanol blends engine durability study. Coordinating Research Council (2012)

  19. Mansot, J., Hallouis, M., Martin, J.: Colloidal antiwear additives 1. structural study of overbased calcium alkylbenzene sulfonate micelles. Colloid Surf. A 71(2), 123–134 (1993)

    Article  Google Scholar 

  20. Fu, J., Lu, Y., Campbell, C.B., Papadopoulos, K.D.: Acid neutralization by marine cylinder lubricants inside a heating capillary: strong/weak-stick collision mechanisms. Ind. Eng. Chem. Res. 45(16), 5619–5627 (2006)

    Article  Google Scholar 

  21. Costello, M., Riff, I.: Study of hydroforming lubricants with overbased sulfonates and friction modifiers. Tribol. Lett. 20(3–4), 201–208 (2005)

    Article  Google Scholar 

  22. Griffiths, J., Heyes, D.: Atomistic simulation of overbased detergent inverse micelles. Langmuir 12(10), 2418–2424 (1996)

    Article  Google Scholar 

  23. Cunningham, I.D., Courtois, J.-P., Danks, T.N., Heyes, D.M., Moreton, D.J., Taylor, S.E.: Synthesis and characterisation of calixarene-stabilised calcium carbonate overbased detergents. Colloid Surf. A 229(1), 137–147 (2003)

    Article  Google Scholar 

  24. Bearchell, C., Heyes, D.M., Moreton, D., Taylor, S.: Overbased detergent particles: experimental and molecular modelling studies. Phys. Chem. Chem. Phys. 3(21), 4774–4783 (2001)

    Article  Google Scholar 

  25. Adams, C.J., Dowding, P.J.: Overbased metal sulphonate detergent. Patent No. US 8,105,991 B2 (2012)

  26. Brown, J.R., Adams, P.E., Carrick, V.A., Dohner, B.R., Abraham, W.D., Vilardo, J.S., Lange, R.M., Mosier, P.E.: Titanium compounds and complexes as additives in lubricants. Patent No. US 8,268,759 B2 (2012)

  27. Wu, R.C., Campbell, C.B., Papadopoulos, K.D.: Acid-neutralizing of marine cylinder lubricants: effects of nonionic surfactants. Ind. Eng. Chem. Res. 39(10), 3926–3931 (2000)

    Article  Google Scholar 

  28. Duan, Y., Rausa, R., Fiaschi, P., Papadopoulos, K.D.: Neutralization of acetic acid by automobile motor oil. Tribol. Int. 98, 94–99 (2016)

    Article  Google Scholar 

  29. Griffiths, P.R., De Haseth, J.A.: Fourier Transform Infrared Spectrometry, vol. 171. Wiley, Hoboken (2007)

    Book  Google Scholar 

  30. Silverstein, R.M., Webster, F.X., Kiemle, D.J., Bryce, D.L.: Spectrometric Identification of Organic Compounds. Wiley, (2014)

  31. Erhan, S.Z., Asadauskas, S.: Lubricant basestocks from vegetable oils. Ind. Crop. Prod 11(2–3), 277–282 (2000)

    Article  Google Scholar 

  32. Papay, A.G., Zaweski, E.F.: Lubricating oil composition. Patent No. US 4,178,258 A (1979)

  33. Mortier, R.M., Orszulik, S.T., Fox, M.F.: Chemistry and Technology of Lubricants. Springer, London (1992)

    Book  Google Scholar 

  34. Duncan, P.B., Needham, D.: Microdroplet dissolution into a second-phase solvent using a micropipet technique: test of the Epstein–Plesset model for an aniline-water system. Langmuir 22(9), 4190–4197 (2006)

    Article  Google Scholar 

  35. Duncan, P.B., Needham, D.: Test of the Epstein–Plesset model for gas microparticle dissolution in aqueous media: effect of surface tension and gas undersaturation in solution. Langmuir 20(7), 2567–2578 (2004)

    Article  Google Scholar 

  36. Zhu, P., Harris, T.V., Driver, M.S., Campbell, C.B., Pratt, L.R., Papadopoulos, K.D.: Dissolution Kinetics of [Hmim][BF4] Ionic Liquid Droplets in 1-pentanol. J. Phys. Chem. C 113(37), 16458–16463 (2009)

    Article  Google Scholar 

  37. Garcia-Bermudes, M., Rausa, R., Papadopoulos, K.: Formation of colloidal shells on acidic droplets undergoing neutralization in marine diesel engine cylinder oils. Tribol. Lett. 51(1), 85–92 (2013)

    Article  Google Scholar 

  38. Lide, D.R.: CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton (2005)

    Google Scholar 

  39. Buhaug, Ø.: Deposit formation on cylinder liner surface in medium-speed engines. Dissertation, Norwegian University of Science and Technology (2003)

  40. Buhaug, Ø., Almås, T.: Characterisation of diesel engine cylinder liner deposits by surface measurements. Tribotest 10(3), 207–223 (2004)

    Article  Google Scholar 

  41. Sautermeister, F.A., Priest, M.: Physical and chemical impact of sulphuric acid on cylinder lubrication for large 2-stroke marine diesel engines. Tribol. Lett. 47(2), 261–271 (2012)

    Article  Google Scholar 

  42. Sautermeister, F., Priest, M., Lee, P., Fox, M.: Impact of sulphuric acid on cylinder lubrication for large 2-stroke marine diesel engines: contact angle, interfacial tension and chemical interaction. Tribol. Int. 59, 47–56 (2013)

    Article  Google Scholar 

  43. Hsu, C.-P.S.: Infrared spectroscopy. In: Handbook of Instrumental Techniques for Analytical Chemistry, p. 248 (1997)

  44. Musumeci, A.W., Frost, R.L., Waclawik, E.R.: A spectroscopic study of the mineral paceite (calcium acetate). Spectrochim. Acta A 67(3), 649–661 (2007)

    Article  Google Scholar 

  45. Papke, B.L.: Neutralization of basic oil-soluble calcium sulfonates by carboxylic acids. Tribol T 31(4), 420–426 (1988)

    Article  Google Scholar 

  46. Jerome, P.: Stabilized suspensions of calcium acetate in oil. Patent No. US 2,989,464 A (1961)

  47. Tobias, D.J., Klein, M.L.: Molecular dynamics simulations of a calcium carbonate/calcium sulfonate reverse micelle. J. Phys. Chem.-US 100(16), 6637–6648 (1996)

    Article  Google Scholar 

  48. Mansot, J., Hallouis, M., Martin, J.: Colloidal antiwear additives 2. Tribological behaviour of colloidal additives in mild wear regime. Colloid Surf. A 75, 25–31 (1993)

    Article  Google Scholar 

  49. Najman, M., Kasrai, M., Bancroft, G.M., Davidson, R.: Combination of ashless antiwear additives with metallic detergents: interactions with neutral and overbased calcium sulfonates. Tribol. Int. 39(4), 342–355 (2006)

    Article  Google Scholar 

  50. Stott, F., Macdonald, A.: The influence of acid strength on the corrosive wear of grey cast irons in oil-sulphuric acid mixtures. Wear 122(3), 343–361 (1988)

    Article  Google Scholar 

  51. Erdemir, A.: Review of engineered tribological interfaces for improved boundary lubrication. Tribol. Int. 38(3), 249–256 (2005)

    Article  Google Scholar 

  52. Priest, M., Taylor, C.: Automobile engine tribology-approaching the surface. Wear 241(2), 193–203 (2000)

    Article  Google Scholar 

  53. Wu, R.C., Papadopoulos, K.D., Campbell, C.B.: Acid-neutralizing of marine cylinder lubricants: measurements and effects of dispersants. AIChE J. 46(7), 1471–1477 (2000)

    Article  Google Scholar 

  54. Detweiler, W.K.: Calcium mixed-salt lubricant stabilized. Patent No. US 3,125,521 A (1964)

  55. Morway, A.J.: Oil dispersions of calcium acetate hydrates. Patent No. US 2,927,892 A (1960)

  56. James, N.: Calcium acetate lubricant. Patent No. US 3,310,490 A (1967)

  57. Coant, P.M., De, M.F.G.A.: Lubricant and additives therefor. Patent No. US 3,259,577 A (1966)

  58. Jesse, M.A., John, B.A.: Finely divided calcium acetate particles and lubricating compositions thereof. Patent No. US 3,231,495 A (1966)

  59. Davis, R.H.: Lubricating oil compositions containing calcium acetate and lubricating solids. Patent No. US 3,194,760 A (1965)

Download references

Acknowledgments

The authors are grateful to Marco Lattuada, of Eni S.p.A., for the preparation of the fully formulated oil sample and for the helpful discussions. Support from Eni S.p.A. and Tulane’s Department of Chemical & Biomolecular Engineering made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriakos D. Papadopoulos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 988 kb)

Supplementary material 2 (AVI 5232 kb)

Supplementary material 3 (AVI 7726 kb)

Supplementary material 4 (AVI 10428 kb)

Supplementary material 5 (AVI 19002 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Rausa, R., Zhao, Q. et al. Neutralization Mechanism of Acetic Acid by Overbased Colloidal Nanoparticles. Tribol Lett 64, 8 (2016). https://doi.org/10.1007/s11249-016-0742-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0742-3

Keywords

Navigation