Skip to main content
Log in

Resonance Shear Measurement of Confined Alkylphenyl Ether Lubricants

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The tribological properties of four phenyl ether lubricants, monoalkydiphenyl ether (MADE), dialkyldiphenyl ether (DADE), m-phenoxyphenoxy m-biphenyl (m-4P2E), and m-bis(m-phenoxyphenoxy) benzene (m-5P4E), confined between mica surfaces have been investigated using the resonance shear measurement (RSM). The RSM study revealed that the viscous parameter of these lubricants increased when they were confined in a nano-space. The viscous parameter b 2 values of these lubricants confined in a gap smaller than ca. 2–3 nm were in the order of MADE > DADE > m-4P2E ≈ m-5P4E, while their bulk viscosities were in the order of m-5P4E > m-4P2E > DADE > MADE. Further, the MADE, which has better hydrodynamic lubrication property because of the lowest bulk viscosity, was relatively easily squeezed out from the gap compared to others. These results have demonstrated that phenyl ether lubricants confined in a nano-space behave quite differently from those of the bulk phase, and the direct characterization of confined lubricants is imperative for designing efficient lubricants, especially for boundary lubrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The intensity and frequency of the AS and MC peaks for DADE were different from those observed for MADE (Fig. 4a). This was caused by the change in the effective spring constants and viscous parameters of the upper and lower units due to the disassembly and assembly of the apparatus. Thus, we always measured the AS and MC resonance curves for the each set of measurements as the references for the physical model analysis.

References

  1. Horn, R.G., Israelachvili, J.N., Perez, E.: J. Phys. 42, 39 (1981)

    Article  Google Scholar 

  2. Horn, R.G., Israelachvili, J.N.: J. Chem. Phys. 75, 1400 (1981)

    Article  Google Scholar 

  3. Israelachvili, J.N., MacGuiggan, P.M., Homola, A.H.: Science 240, 189 (1988)

    Article  Google Scholar 

  4. Gee, M.L., MacGuiggan, P.M., Israelachvili, J.N., Homola, A.M.: J. Chem. Phys. 93, 1895–1906 (1990)

    Article  Google Scholar 

  5. Peachey, J., Alsten, J.V., Granick, S.: Rev. Sci. Instrum. 62, 463 (1991)

    Article  Google Scholar 

  6. Granick, S.: Science 253, 1374 (1991)

    Article  Google Scholar 

  7. Klein, J., Kumacheva, E.: J. Chem. Phys. 108, 6996 (1998)

    Article  Google Scholar 

  8. Kumacheva, E., Klein, J.: J. Chem. Phys. 108, 7010 (1998)

    Article  Google Scholar 

  9. Dushkin, C., Kurihara, K.: Colloids Surf. A Physicochem. Eng. Asp. 129–130, 131 (1997)

    Article  Google Scholar 

  10. Dushkin, C., Kurihara, K.: Rev. Sci. Instrum. 69, 2095 (1998)

    Article  Google Scholar 

  11. Mizukami, M., Kurihara, K.: Rev. Sci. Instrum. 79, 113705 (2008)

    Article  Google Scholar 

  12. Sakuma, H., Kurihara, K.: Rev. Sci. Instrum. 80, 013701 (2009)

    Article  Google Scholar 

  13. Gao, J., Luedtke, W.D., Landman, U.: J. Chem. Phys. 106, 4309 (1997)

    Article  Google Scholar 

  14. Matsubara, H., Pichierri, F., Kurihara, K.: Phys. Rev. Lett. 109, 197801 (2012)

    Article  Google Scholar 

  15. Fujii, Y., Kakehi, T.: J. Jpn. Soc. Tribol. 47, 187 (1997)

    Google Scholar 

  16. Trivedi, H.K., Klenke, C.J., Saba, C.S.: Tribol. Lett. 17, 1 (2004)

    Article  Google Scholar 

  17. Hayashi, S., Abe, T., Higashi, N., Niwa, M., Kurihara, K.: Langmuir 18, 3932 (2002)

    Article  Google Scholar 

  18. Israelachvili, J.N.: J. Colloid Interface Sci. 44, 259 (1973)

    Article  Google Scholar 

  19. Mizukami, M., Kusakabe, K., Kurihara, K.: Prog. Colloid Polym. Sci. 128, 105 (2004)

    Google Scholar 

  20. Sakuma, H., Otsuki, K., Kurihara, K.: Phys. Rev. Lett. 96, 046104 (2006)

    Article  Google Scholar 

  21. Kayano, Y., Sakuma, H., Kurihara, K.: Langmuir 23, 8365 (2007)

    Article  Google Scholar 

  22. Kayano, Y., Sakuma, H., Kurihara, K.: Trans. MRS-J 32, 367 (2007)

    Google Scholar 

  23. Kawai, H., Sakuma, H., Mizukami, M., Abe, T., Fukao, Y., Tajima, H., Kurihara, K.: Rev. Sci. Instrum. 79, 043701 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Green Tribology Innovation Network” in the area of Advanced Environmental Materials of Green Network of Excellence (GRENE) program and “Ultra-low Friction Technology Area” in the Tohoku Innovative Materials Technology Initiatives for Reconstruction from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazue Kurihara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1659 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, J., Mizukami, M. & Kurihara, K. Resonance Shear Measurement of Confined Alkylphenyl Ether Lubricants. Tribol Lett 56, 501–508 (2014). https://doi.org/10.1007/s11249-014-0427-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0427-8

Keywords

Navigation