Skip to main content
Log in

Tribological Properties Mapping: Local Variation in Friction Coefficient and Adhesion

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Tribological properties mapping is a new technique that extracts friction coefficient and adhesion maps obtained from lateral atomic force microscope (LAFM) images. By imaging the surface systematically as a function of load, a series of images can be tiled, and pixelwise fitted to a modified Amontons’ Law to obtain friction coefficient and adhesion maps. This removes the ambiguity of friction contrast in LAFM imaging which can be a function of the load used for imaging. In ambient laboratory, air and tetradecane, a sample of Vancron®40, commercial powder metallurgical tool alloy containing nitrogen, have been scanned using a standard silicon cantilever in order to obtain tribological data. The tribological properties mapping provides unique information regarding the heterogeneous alloy microstructure as well as shedding light on the tribological behavior of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Svagan, A.J., Azizi Samir, M.A.S., Berglund, L.A.: Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8(8), 2556–2563 (2007)

    Article  CAS  Google Scholar 

  2. Thormann, E., Mizuno, H., Jansson, K., Hedin, N., Fernandez, M.S., Arias, J.L., Rutland, M.W., Pai, R.K., Bergstrom, L.: Embedded proteins and sacrificial bonds provide the strong adhesive properties of gastroliths. Nanoscale 4(13), 3910–3916 (2012)

    Article  CAS  Google Scholar 

  3. Sababi, M., Ejnermark, S., Andersson, J.r., Claesson, P.M., Pan, J.: Microstructure influence on corrosion behavior of a Fe-Cr-VN tool alloy studied by SEM/EDS, scanning Kelvin force microscopy and electrochemical measurement. Corros. Sci. 66, 153–159 (2013)

    Article  CAS  Google Scholar 

  4. Bogdanovic, G., Tiberg, F., Rutland, M.W.: Sliding friction between cellulose and silica surfaces. Langmuir 17(19), 5911–5916 (2001)

    Article  CAS  Google Scholar 

  5. Israelachvili, J.: Surface forces and microrheology of molecularly thin liquid films. In: Nhushan, B. (ed.) Handbook of micro/nano tribology. CRC Press, Boca Raton (1995)

    Google Scholar 

  6. Derjaguin, B.: Molekulartheorie der äußeren reibung. Zeitschrift für physik a hadrons and nuclei 88(9), 661–675 (1934)

    Google Scholar 

  7. Berman, A., Drummond, C., Israelachvili, J.: Amontons’ law at the molecular level. Tribol. Lett. 4(2), 95–101 (1998)

    Article  CAS  Google Scholar 

  8. Gao, J., Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N., Landman, U.: Frictional forces and Amontons’ law: From the molecular to the macroscopic scale. J. Phys. Chem. B 108(11), 3410–3425 (2004)

    Article  CAS  Google Scholar 

  9. Feiler, A.A., Jenkins, P., Rutland, M.W.: Effect of relative humidity on adhesion and frictional properties of micro- and nano-scopic contacts. J. Adhes. Sci. Technol. 19(3–5), 165–179 (2005)

    Article  CAS  Google Scholar 

  10. Plunkett, M.A., Feiler, A., Rutland, M.W.: Atomic force microscopy measurements of adsorbed polyelectrolyte layers. 2. Effect of composition and substrate on structure, forces, and friction. Langmuir 19(10), 4180–4187 (2003)

    Article  CAS  Google Scholar 

  11. Feiler, A.A., Stiernstedt, J., Theander, K., Jenkins, P., Rutland, M.W.: Effect of capillary condensation on friction force and adhesion. Langmuir 23(2), 517–522 (2006)

    Article  Google Scholar 

  12. Pilkington, G.A., Thormann, E., Claesson, P.M., Fuge, G.M., Fox, O.J.L., Ashfold, M.N.R., Leese, H., Mattia, D., Briscoe, W.H.: Amontonian frictional behaviour of nanostructured surfaces. Phys. Chem. Chem. Phys. 13(20), 9318–9326 (2011)

    Article  CAS  Google Scholar 

  13. Thormann, E., Yun, S.H., Claesson, P.M., Linnros, J.: Amontonian friction induced by flexible surface features on microstructured silicon. ACS Appl. Mater. Interfaces 3(9), 3432–3439 (2011)

    Article  CAS  Google Scholar 

  14. Yamada, S., Israelachvili, J.: Friction and adhesion hysteresis of fluorocarbon surfactant monolayer-coated surfaces measured with the surface forces apparatus. J. Phys. Chem. B 102(1), 234–244 (1998)

    Article  CAS  Google Scholar 

  15. Bowden, F.P., Tabor, D.: Mechanism of metallic friction. Nature 150, 197–199 (1942)

    Article  Google Scholar 

  16. Butt, H.-J.r., Graf, K., Kappl, M.: Physics and chemistry of interfaces, 2nd, rev. and enl. ed. Wiley-VCH, Weinheim (2006)

  17. Sasaki, K., Koike, Y., Azehara, H., Hokari, H., Fujihira, M.: Lateral force microscope and phase imaging of patterned thiol self-assembled monolayer using chemically modified tips. Appl. Phys. A 66, 1275–1277 (1998)

    Article  Google Scholar 

  18. Baselt, D.R., Baldeschwieler, J.D.: Lateral forces during atomic force microscopy of graphite in air. J. Vac. Sci. Technol. B 10(5), 2316–2322 (1992)

    Article  CAS  Google Scholar 

  19. McMullen, R.L., Kelty, S.P.: Investigation of human hair fibers using lateral force microscopy. Scanning 23(5), 337–345 (2001)

    Article  CAS  Google Scholar 

  20. Smith, J.R., Swift, J.A.: Lamellar subcomponents of the cuticular cell membrane complex of mammalian keratin fibres show friction and hardness contrast by AFM. J. Microsc. 206(3), 182–193 (2002)

    Article  CAS  Google Scholar 

  21. Sidouni, F.Z., Nurdin, N., Chabrecek, P., Lohmann, D., Vogt, J., Xanthopoulos, N., Mathieu, H.J., Francois, P., Vaudaux, P., Descouts, P.: Surface properties of a specifically modified high-grade medical polyurethane. Surf. Sci. 491(3), 355–369 (2001)

    Article  CAS  Google Scholar 

  22. Levi, M.D., Cohen, Y., Cohen, Y., Aurbach, D., Lapkowski, M., Vieil, E., Serose, J.: Atomic force microscopy study of the morphology of polythiophene films grafted onto the surface of a Pt microelectrode array. Synth. Met. 109(1–3), 55–65 (2000)

    Article  CAS  Google Scholar 

  23. Ralston, J., Larson, I., Rutland, M.W., Feiler, A.A., Kleijn, M.: Atomic force microscopy and direct surface force measurements—(IUPAC technical report). Pure Appl. Chem. 77(12), 2149–2170 (2005)

    Article  CAS  Google Scholar 

  24. Breakspear, S., Smith, J.R., Nevell, T.G., Tsibouklis, J.: Friction coefficient mapping using the atomic force microscope. Surf. Interface Anal. 36(9), 1330–1334 (2004)

    Article  CAS  Google Scholar 

  25. Hatami, S., Nafari, A., Nyborg, L., Jelvestam, U.: Galling related surface properties of powder metallurgical tool steels alloyed with and without nitrogen. Wear 269(3–4), 229–240 (2010)

    Article  CAS  Google Scholar 

  26. Sader, J.E., Chon, J.W.M., Mulvaney, P.: Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70(10), 3967–3969 (1999)

    Article  CAS  Google Scholar 

  27. Álvarez-Asencio, R., Pan, J., Thormann, E., Rutland, M.W.: Determination of torsional spring constant of AFM cantilevers: Combining normal spring constant and classical beam theory. (2012). Rev. Sci. Instrum. (2013) (Submitted)

  28. Bogdanovic, G., Meurk, A., Rutland, M.W.: Tip friction-torsional spring constant determination. Colloid Surf. B 19, 397–405 (2000)

    Article  CAS  Google Scholar 

  29. Heikkilä, I., Van der Heíde, E., Stam, E.D., Giraud, H., Lovato, G., Akdut, N., Clarysse, F., Caenen, P.: Tool material aspects in forming of stainless steel with easy-to-clean lubricants. Innovations in metal forming. Brescia, Italy (2004)

    Google Scholar 

  30. Cappella, B., Dietler, G.: Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34(1–3), 1–104 (1999)

    Google Scholar 

  31. Johanna, S., Mark, W.R., Phil, A.: A novel technique for the in situ calibration and measurement of friction with the atomic force microscope. Rev. Sci. Instrum. 76(8), 083710 (2005)

    Article  Google Scholar 

  32. Feiler, A.A., Bergstrom, L., Rutland, M.W.: Superlubricity using repulsive van der Waals forces. Langmuir 24(6), 2274–2276 (2008)

    Article  CAS  Google Scholar 

  33. Thormann, E., Simonsen, A.C., Hansen, P.L., Mouritsen, O.G.: Force trace hysteresis and temperature dependence of bridging nanobubble induced forces between hydrophobic surfaces. ACS Nano 2(9), 1817–1824 (2008)

    Article  CAS  Google Scholar 

  34. Carambassis, A., Jonker, L.C., Attard, P., Rutland, M.W.: Forces measured between hydrophobic surfaces due to a submicroscopic bridging bubble. Phys. Rev. Lett. 80(24), 5357–5360 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is part of the program “Microstructure, Corrosion and Friction Control” financed by SSF, the Swedish foundation for Strategic Research. We also thank the Swedish Research Council for financial support. Uddeholms AB, Sweden, is acknowledged for supplying the Vancron®40 samples and the microstructure information of the alloy. Useful discussions with Gunnar Dunér and Emily Cranston are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Rutland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez-Asencio, R., Pan, J., Thormann, E. et al. Tribological Properties Mapping: Local Variation in Friction Coefficient and Adhesion. Tribol Lett 50, 387–395 (2013). https://doi.org/10.1007/s11249-013-0136-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0136-8

Keywords

Navigation