Skip to main content
Log in

Propagation Length of Self-healing Slip Pulses at the Onset of Sliding: A Toy Model

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Macroscopic sliding between two solids is triggered by the propagation of a micro-slip front along the frictional interface. In certain conditions, sliding is preceded by the propagation of aborted fronts, spanning only part of the contact interface. The selection of the characteristic size spanned by those so-called precursors remains poorly understood. Here, we introduce a 1D toy model of precursors between a slider and a track in which the fronts are quasi-static self-healing slip pulses. When the slider’s thickness is large compared to the elastic correlation length and when the interfacial stiffness is small compared with the bulk stiffness, we provide an analytical solution for the length of the first precursor, \(\varLambda\), and the shear stress field associated with it. These quantities are given as a function of the bulk material parameters, the frictional properties of the interface and the macroscopic loading conditions. Analytical results are in quantitative agreement with the numerical solution of the model. In contrast with previous models, our model predicts that \(\varLambda\) does not depend on the frictional breaking threshold of the interface. Our results should be relevant to the various systems in which self-healing slip pulses have been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Persson, B.N.J.: Sliding Friction: Physical Principles and Applications. Springer, Berlin (1998)

    Book  Google Scholar 

  2. Braun, O.M., Naumovets, A.G.: Nanotribology: Microscopic mechanisms of friction. Surf. Sci. Rep. 60, 79 (2006)

    Article  Google Scholar 

  3. Chateauminois, A., Fretigny, C., Olanier, L.: Friction and shear fracture of an adhesive contact under torsion. Phys. Rev. E 81, 026106 (2010)

    Article  Google Scholar 

  4. Prevost, A., Scheibert, J., Debrégeas, G.: Probing the micromechanics of a multi-contact interface at the onset of frictional sliding. Eur. Phys. J. E 36, 17 (2013)

    Article  Google Scholar 

  5. Rubinstein, S.M., Cohen, G., Fineberg, J.: Detachment fronts and the onset of dynamic friction. Nature 430, 1005 (2004)

    Article  Google Scholar 

  6. Rubinstein, S.M., Cohen, G., Fineberg, J.: Dynamics of precursors to frictional sliding. Phys. Rev. Lett. 98, 226103 (2007)

    Article  Google Scholar 

  7. Maegawa, S., Suzuki, A., Nakano, K.: Precursors of global slip in a longitudinal line contact under non-uniform normal loading. Tribol. Lett. 38, 313 (2010)

    Article  Google Scholar 

  8. Romero, V., Wandersman, E., Debrégeas, G., Prevost, A.: Probing locally the onset of slippage at a model multicontact interface. Phys. Rev. Lett. 112, 094301 (2014)

    Article  Google Scholar 

  9. Trømborg, J.K., Sveinsson, H.A., Scheibert, J., Thøgersen, K., Amundsen, D.S., Malthe-Sørenssen, A.: Slow slip and the transition from fast to slow fronts in the rupture of frictional interfaces. Proc. Natl. Acad. Sci. USA 111, 8764–8769 (2014)

    Article  Google Scholar 

  10. Braun, O.M., Barel, I., Urbakh, M.: Dynamics of transition from static to kinetic friction. Phys. Rev. Lett. 103, 194301 (2009)

    Article  Google Scholar 

  11. Scheibert, J., Dysthe, D.K.: Role of friction-induced torque in stick-slip motion. EPL 92, 54001 (2010)

    Article  Google Scholar 

  12. Amundsen, D.S., Scheibert, J., Thøgersen K., Trømborg J., Malthe-Sørenssen A.: 1D Model of precursors to frictional stick-slip motion allowing for robust comparison with experiments. Tribol. Lett. 45, 357 (2012)

    Article  Google Scholar 

  13. Trømborg, J., Scheibert, J., Amundsen, D.S., Thøgersen, K., Malthe-Sørenssen, A.: Transition from static to kinetic friction: Insights from a 2D model. Phys. Rev. Lett. 107, 074301 (2011)

    Article  Google Scholar 

  14. Braun, O.M., Peyrard, M., Stryzheus, D.V., Tosatti, E.: Collective effects at frictional interfaces. Tribol. Lett. 48, 11 (2012)

    Article  Google Scholar 

  15. Braun, O.M., Peyrard, M.: Crack in the frictional interface as a solitary wave. Phys. Rev. E 85, 026111 (2012)

    Article  Google Scholar 

  16. Lykotrafitis, G., Rosakis, A.J., Ravichandran, G.: Self-healing pulse-like shear ruptures in the laboratory. Science 313, 1765 (2006)

    Article  Google Scholar 

  17. Ronsin, O., Baumberger, T., Hui, C.Y.: Nucleation and propagation of quasi-static interfacial slip pulses. J. Adhes 87, 504 (2011)

    Article  Google Scholar 

  18. Caroli, C., Nozieres, P.: Hysteresis and elastic interactions of microasperities in dry friction. Eur. Phys. J. B 4, 233 (1998)

    Article  Google Scholar 

  19. Brörmann, K., Barel, I., Urbakh, M., Bennewitz, R.: Friction on a microstructured elastomer surface. Tribol. Lett. 50, 3 (2013)

    Article  Google Scholar 

  20. Thøgersen, K., Trømborg, J.K., Sveinsson, H.A., Malthe-Sørenssen, A., Scheibert, J.: History-dependent friction and slow slip from time-dependent microscopic junction laws studied in a statistical framework. Phys. Rev. E 89, 052401 (2014)

    Article  Google Scholar 

  21. Baumberger, T., Caroli, C., Ronsin, O.: Self-healing slip pulses and the friction of gelatin gels. Eur. Phys. J. E 11, 85 (2003)

    Article  Google Scholar 

  22. Braun, O.M., Peyrard, M.: Modeling friction on a mesoscale: Master equation for the earthquakelike model. Phys. Rev. Lett. 100, 125501 (2008)

    Article  Google Scholar 

  23. Braun, O.M., Peyrard, M.: Master equation approach to friction at the mesoscale. Phys. Rev. E 82, 036117 (2010)

    Article  Google Scholar 

  24. Braun, O.M., Peyrard, M.: Role of aging in a minimal model of earthquakes. Phys. Rev. E 87, 032808 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

We wish to express our gratitude to M. Peyrard for numerous useful discussions. We thank J. K. Trømborg for a careful reading of the manuscript. This work was supported by a Dnipro Hubert Curien Partnership (Grant No. 28225UH) and by the People Programme (Marie Curie Actions) of the European Union’s 7th Framework Programme (FP7/2007–2013) under Research Executive Agency Grant Agreement 303871. O.B. acknowledges a partial support from the NASU “RESURS” program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Scheibert.

Appendix: Analytical derivation of Eq. (25)

Appendix: Analytical derivation of Eq. (25)

Let us introduce two dimensionless parameters

$$\begin{aligned} h \equiv \lambda _{\rm c} /H \quad {\rm and} \; q \equiv k/K, \end{aligned}$$
(26)

so that \(K_{\rm L} = K/h\), \(K_{\rm T} = Kh/2(1+\sigma )\), \(\beta = 1/(1+b)\), \(1-\beta = b/(1+b)\), \((\lambda _{\rm c} \kappa _{\rm T})^2 = hq/b\), \((\lambda _{\rm c} \kappa )^2 = q \, (1+b)/b\),

$$\begin{aligned} \varepsilon \equiv \frac{\kappa _{\rm T}^2}{\kappa ^2} = \frac{h}{1+b}, \end{aligned}$$
(27)

where \(b = 2(1+\sigma )q/h\), and consider the typical system with \(h, q \ll 1\). In this case \(\varepsilon \ll 1\), so that \(\kappa _1^2 \approx \kappa ^2 (1+\beta \varepsilon )\) and \(\kappa _2^2 \approx \kappa ^2 \varepsilon \, (1-\beta ) = q \varepsilon /\lambda _{\rm c}^2\), or

$$\begin{aligned} (\lambda _{\rm c} \kappa _2)^{-1} \approx [2(1+\sigma ) + h/q]^{1/2} /h. \end{aligned}$$
(28)

In accordance with the numerics (see Fig. 2a), let us assume that in the case of \(h, q \ll 1\) the displacement field in the US is given by

$$\begin{aligned} u_{\rm t} (x) \approx U_{t0} e^{-\kappa _2 x} \end{aligned}$$
(29)

and does not change during front propagation. Before nucleation of the first precursor, the solution of Eq. (7) is

$$\begin{aligned}&u(x) = A_{30} \sinh (\kappa x) + A_{40} \cosh (\kappa x) \\&- \kappa \beta U \int _{0}^{x} {\rm d}\xi \, e^{-\kappa _2 \xi } \sinh [\kappa (x - \xi )] \\&= \frac{1}{2} \left( A_{40} + A_{30} - \frac{1}{2} \, \beta U \frac{\kappa }{\kappa + \kappa _2} \right) e^{\kappa x} \\&+ \frac{1}{2} \left( A_{40} - A_{30} - \beta U \frac{\kappa }{\kappa - \kappa _2} \right) e^{-\kappa x} \\&+ \beta U \frac{\kappa ^2}{\kappa ^2 - \kappa _2^2} e^{-\kappa _2 x} . \end{aligned}$$
(30)

The right-hand-side boundary condition, \(u(x) \rightarrow 0\) at \(x \rightarrow \infty\), gives us

$$\begin{aligned} A_{40} + A_{30} = \frac{1}{2} \, \beta U \frac{\kappa }{\kappa + \kappa _2} \;, \end{aligned}$$
(31)

while the left-hand-side boundary condition (Eq. (10)) leads to the equation

$$\begin{aligned} (A_{40} - A_{30})(1+\lambda _{\rm c} \kappa )(\kappa + \kappa _2) = \beta U \kappa (1+a \kappa + 2 \lambda _{\rm c} \kappa _2). \end{aligned}$$
(32)

Thus, before nucleation of the first precursor, the IL displacement field is

$$\begin{aligned} u(x) = \frac{\beta U \kappa ^2}{(\kappa ^2 - \kappa _2^2)} \left( e^{-\kappa _2 x} - \frac{\kappa _2}{\kappa } \frac{(1+\lambda _{\rm c} \kappa _2)}{(1+\lambda _{\rm c} \kappa )} \, e^{-\kappa x} \right) . \end{aligned}$$
(33)

Equation (33) allows us to couple the parameters \(U \equiv u_{\rm t} (0)\) and \(u_{\rm c} \equiv u(0)\):

$$\begin{aligned} U = u_{\rm c} \left( 1+\frac{\kappa _2}{\kappa } \right) / (\beta \varPsi _1)\,, \end{aligned}$$
(34)

where

$$\begin{aligned} \varPsi _1 = 1+\frac{\kappa _2}{\kappa } \frac{\lambda _{\rm c} \kappa }{(1+\lambda _{\rm c} \kappa )}. \end{aligned}$$
(35)

When the displacement of the IL trailing edge reaches the threshold value \(u_{\rm s}\) at some \(U=U_0 = u_{\rm s} ( 1+ \kappa _2 /\kappa ) / (\beta \varPsi _1)\), the front starts to propagate. In this case the solution of Eq. (7), ahead of the propagating front, \(x>s\), where \(u_{\rm b} (x) =0\) so that \(w(x) = \beta u_{\rm t} (x) = \beta U_0 e^{-\kappa _2 x}\), is given by

$$\begin{aligned}&\widetilde{u}(x;s) = A_3 (s) \, e^{-\kappa (x-s)} + A_4 (s) \, e^{\kappa (x-s)} \\&- \kappa \beta U_{0} \int _{s}^{x} {\rm d}\xi \, e^{-\kappa _2 \xi } \sinh [\kappa (x - \xi )] \\&= \frac{\beta U_0 \kappa ^2 e^{-\kappa _2 x}}{(\kappa ^2 - \kappa _2^2)} + A_3 (s) \, e^{-\kappa (x-s)} + A_4 (s) \, e^{\kappa (x-s)} \\&- \frac{1}{2} \, \beta U_0 \kappa \, e^{-\kappa _2 s} \left[ \frac{e^{\kappa (x-s)}}{(\kappa + \kappa _2)} + \frac{e^{-\kappa (x-s)}}{(\kappa - \kappa _2)} \right]. \end{aligned}$$
(36)

The right-hand-side boundary condition gives us the coefficient \(A_4 (s)\),

$$\begin{aligned} A_4 (s) = \frac{1}{2} \, \beta U_0 \frac{\kappa \, e^{-\kappa _2 s}}{(\kappa + \kappa _2)}, \end{aligned}$$
(37)

so that Eq. (36) takes the form

$$\begin{aligned}&\widetilde{u}(x;s) = \frac{\beta U_0 \kappa ^2}{(\kappa ^2 - \kappa _2^2)} \; e^{-\kappa _2 x} \\&+ \left[ A_3 (s) - \frac{1}{2} \, \beta U_0 \frac{\kappa \, e^{-\kappa _2 s}}{(\kappa - \kappa _2)} \right] e^{-\kappa (x-s)} . \end{aligned}$$
(38)

Behind the propagating front, \(x<s\), where \(w(x) = \beta \, u_{\rm t} (x) + (1-\beta ) \, u_{\rm b} (x)\) and \(u_{\rm b} (x) = \widetilde{u}(x+0;x) = A_3 (x) + A_4 (x)\), the solution of Eq. (7) is given by

$$\begin{aligned}&\widetilde{u}(x;s) = A_1 (s) \sinh (\kappa x) + A_2 (s) \cosh (\kappa x) \\&- \kappa \, (1-\beta ) \int _{0}^{x} {\rm d}\xi \, [A_3 (\xi ) + A_4 (\xi )] \, \sinh [\kappa (x - \xi )] \\&- \kappa \beta U_{0} \int _{0}^{x} {\rm d}\xi \, e^{-\kappa _2 \xi } \sinh [\kappa (x - \xi )] \\&= \beta U_0 {\mathcal {F}} (x) + A_1 (s) \sinh (\kappa x) + A_2 (s) \cosh (\kappa x) \\&- \kappa \, (1-\beta ) \int _{0}^{x} {\rm d}\xi \, A_3 (\xi ) \, \sinh [\kappa (x - \xi )], \end{aligned}$$
(39)

where

$$\begin{aligned}&{\mathcal {F}} (x) = \frac{\varPsi _2 \kappa ^2}{(\kappa ^2 - \kappa _2^2)} \\&\times \left( \frac{\kappa _2}{\kappa } \sinh (\kappa x) - \cosh (\kappa x) + e^{-\kappa _2 x} \right) , \end{aligned}$$
(40)
$$\begin{aligned}&\frac{{\mathcal {F}}' (x)}{\kappa } = \frac{\varPsi _2 \kappa ^2}{(\kappa ^2 - \kappa _2^2)} \\&\times \left( \frac{\kappa _2}{\kappa } \cosh (\kappa x) - \sinh (\kappa x) - \frac{\kappa _2}{\kappa } \, e^{-\kappa _2 x} \right) , \end{aligned}$$
(41)
$$\begin{aligned}&\varPsi _2 = \frac{(3-\beta ) \kappa + 2\kappa _2}{2(\kappa +\kappa _2)}, \end{aligned}$$
(42)

so that \({\mathcal {F}} (0) =0\) and \({\mathcal {F}}' (0) =0\).

The coefficients \(A_{\dots } (s)\) in these equations are determined by the boundary and continuity conditions. The left-hand-side boundary condition (Eq. (10)) couples the coefficients \(A_1 (s)\) and \(A_2 (s)\). Using \(u_{\rm b} (0)=u_{\rm s}\), \(\widetilde{u}(0;s) = A_2 (s)\) and \(\widetilde{u}'(0;s) = \kappa A_1 (s)\), we obtain

$$\begin{aligned}&A_2 (s) - (\lambda _{\rm c} \kappa )^{-1} A_1 (s) = \varPsi _3, \\&\varPsi _3 = \beta U_0 + (1-\beta ) \, u_{\rm s}. \end{aligned}$$
(43)

The continuity conditions (Eqs. (23) and (24)) lead to two equations

$$\begin{aligned} \kappa&\, (1-\beta ) \int _{0}^{s} {\rm d}\xi \, A_3 (\xi ) \, \sinh [\kappa (s - \xi )] + A_3 (s) \\&= A_1 (s) \sinh (\kappa s) + A_2 (s) \cosh (\kappa s) + \beta U_0 \varPsi _4 (s) \end{aligned}$$
(44)

and

$$\begin{aligned} \kappa&\, (1 -\beta ) \int _{0}^{s} {\rm d}\xi \, A_3 (\xi ) \, \cosh [\kappa (s - \xi )] - A_3 (s) \\&= A_1 (s) \cosh (\kappa s) + A_2 (s) \sinh (\kappa s) + \beta U_0 \varPsi _5 (s), \end{aligned}$$
(45)

where

$$\begin{aligned} \varPsi _4 (s)&= {\mathcal {F}} (s) - \frac{\kappa \, e^{-\kappa _2 s}}{2 (\kappa + \kappa _2)} \;, \end{aligned}$$
(46)
$$\begin{aligned} \varPsi _5 (s)&= \frac{{\mathcal {F}}' (s)}{\kappa } - \frac{\kappa \, e^{-\kappa _2 s}}{2 (\kappa + \kappa _2)} \;. \end{aligned}$$
(47)

Taking the difference and sum of Eqs. (44) and (45), we obtain two new equations:

$$\begin{aligned}&2 A_3 (s) \, e^{\kappa s} - \kappa \, (1-\beta ) \int _{0}^{s} {\rm d}\xi \, A_3 (\xi ) \, e^{\kappa \xi } \\&= A_2 (s) - A_1 (s) + \beta U_0 [\varPsi _4 (s) - \varPsi _5 (s)] \, e^{\kappa s} , \end{aligned}$$
(48)
$$\begin{aligned}&\kappa \, (1-\beta ) \int _{0}^{s} {\rm d}\xi \, A_3 (\xi ) \, e^{-\kappa \xi } \\&= A_2 (s) + A_1 (s) + \beta U_0 \left[ \varPsi _4 (s) + \varPsi _5 (s) \right] \, e^{-\kappa s} . \end{aligned}$$
(49)

Using Eq. (43), Eqs. (46) and (47) may be rewritten as

$$\begin{aligned} 2 A_3 (s) \, e^{\kappa s}&- \kappa \, (1-\beta ) \int _{0}^{s} {\rm d}\xi \, A_3 (\xi ) \, e^{\kappa \xi } = A_1 (s) \frac{(1- \lambda _{\rm c} \kappa )}{\lambda _{\rm c} \kappa } \\&+ \varPsi _3 + \beta U_0 [\varPsi _4 (s) - \varPsi _5 (s)] \, e^{\kappa s} , \end{aligned}$$
(50)
$$\begin{aligned} \kappa \, (1&-\beta ) \int _{0}^{s} {\rm d}\xi \, A_3 (\xi ) \, e^{-\kappa \xi }= A_1 (s) \frac{(1+ \lambda _{\rm c} \kappa )}{\lambda _{\rm c} \kappa } \\&+ \varPsi _3 + \beta U_0 \left[ \varPsi _4 (s) + \varPsi _5 (s) \right] \, e^{-\kappa s} . \end{aligned}$$
(51)

Combining these equations, we finally come to the integral equation for the coefficient \(A_3 (s)\):

$$\begin{aligned}&A_3 (s) (1+\lambda _{\rm c} \kappa ) \, e^{\kappa s} \\&- \kappa (1-\beta ) \int _0^s {\rm d}\xi \, A_3 (\xi ) \, [\cosh (\kappa \xi ) + (\lambda _{\rm c} \kappa ) \sinh (\kappa \xi )] \\&= \lambda _{\rm c} \kappa \varPsi _3 + \beta U_0 \varPsi _2 \varPsi _6 (s), \end{aligned}$$
(52)

where

$$\begin{aligned} \varPsi _6 (s)&= \frac{\kappa \, (1+\lambda _{\rm c} \kappa )}{2(\kappa -\kappa _2)} \, e^{(\kappa -\kappa _2) s} \\&- \frac{\kappa \, (\lambda _{\rm c} \kappa ^2 + \kappa _2)}{(\kappa ^2 - \kappa _2^2)} \left[ 1+e^{-(\kappa +\kappa _2) s} \right] \end{aligned}$$
(53)

so that

$$\begin{aligned} \varPsi _6^{\prime } (s) = \left[ \frac{(1+\lambda _{\rm c} \kappa )}{2} \, e^{\kappa s} +\frac{(\lambda _{\rm c} \kappa ^2 + \kappa _2)}{(\kappa - \kappa _2)} \, e^{-\kappa s} \right] \kappa \, e^{-\kappa _2 s} . \end{aligned}$$
(54)

From Eq. (52) we find that

$$\begin{aligned} A_3 (0) = [\lambda _{\rm c} \kappa \varPsi _3 + \beta U_0 \varPsi _2 \varPsi _6 (0)]/(1+\lambda _{\rm c} \kappa ). \end{aligned}$$
(55)

Differentiating Eq. (52), we obtain a differential equation for \(A_3 (s)\):

$$\begin{aligned} & \frac{1}{\kappa } \, A'_3 (s) + A_3 (s) = A_3 (s) \, \frac{(1-\beta )}{(1+\lambda _{\rm c} \kappa )} \\ &\times [\cosh (\kappa s) + (\lambda _{\rm c} \kappa ) \sinh (\kappa s)] \, e^{-\kappa s} \\ &+ \frac{\beta U_0 \varPsi _2}{\kappa \, (1+\lambda _{\rm c} \kappa )} \varPsi _6^{\prime } (s) \, e^{-\kappa s}. \end{aligned}$$
(56)

From Eq. (56) we obtain that at short distances, \(s \ll \kappa ^{-1}\), \(A_3 (s) \approx A_3 (0) (1+ \gamma _3 s)\), where

$$\gamma _3 = -\frac{\kappa }{1+ \lambda _{\rm c} \kappa } \left[ \beta +\lambda _{\rm c} \kappa - \frac{\beta U_0}{A_3 (0)} \varPsi _2 \frac{\varPsi _6^{\prime } (0)}{\kappa } \right].$$
(57)

From Eqs. (37) and (56) it follows that \(\widetilde{u} (s+0;s) = A_3 (s) + A_4 (s) \approx A_0 \, (1+\gamma s)\) at short distances, \(s \ll \kappa ^{-1}\), where

$$A_0 = A_3 (0) + A_4 (0)$$
(58)

and

$$\gamma = [ \gamma _3 A_3 (0) - \kappa _2 A_4 (0) ]/A_0,$$
(59)

while for long distances, \(s \gg \kappa ^{-1}\), \(\widetilde{u} (s+0;s)\) decays exponentially,

$$\begin{aligned} & \widetilde{u} (s+0;s) \approx {\mathcal {A}} \, e^{-\kappa _2 s} , \\ &{\mathcal {A}} = \beta U_0 \left[ \frac{\kappa }{2 (\kappa + \kappa _2)} + \frac{\varPsi _2}{(1+\beta -2 \kappa _2 /\kappa )} \right] . \end{aligned}$$
(60)

The function \(\widetilde{u} (s+0;s)\) may be approximated as

$$\widetilde{u} (s+0;s) \approx A_0 \; \frac{(1+C)^{\alpha } \, e^{\kappa _3 s}}{(e^{\kappa _3 s} +C)^{\alpha }},$$
(61)

where

$$\alpha = 1+ \kappa _2 /\kappa _3,$$
(62)
$$C= (\kappa _2 + \gamma )/(\kappa _3 - \gamma ),$$
(63)

and comparing Eqs. (59) and (61), we obtain a nonlinear equation, which defines the value \(\kappa _3\):

$$\ln \frac{\mathcal {A}}{A_0} = \left( 1+ \frac{\kappa _2}{\kappa _3} \right) \ln \frac{\kappa _2 + \kappa _3}{\kappa _3 - \gamma }.$$
(64)

Then, the IL stress ahead of the front is \(\sigma _{\rm c} (s) = k \, \widetilde{u} (s+0;s) /\lambda _{\rm c}^2\), and the equation \(\sigma _{\rm c} (\varLambda ) = \sigma _{\rm s}\) defines the characteristic length \(\varLambda\):

$$\varLambda \approx \kappa _3^{-1} \ln y,$$
(65)

where \(y\) is determined by the solution of the equation \({\mathcal {B}} y = (y+C)^{\alpha }\) with \({\mathcal {B}} = (1+C)^{\alpha } k A_0 /(\sigma _{\rm s} \lambda _{\rm c}^2)\).

Using Eq. (60), \(\varLambda\) may approximately be presented as

$$\begin{aligned} \varLambda&\approx \kappa _2^{-1} \ln \left( k {\mathcal {A}}/\sigma _{\rm s} \lambda _{\rm c}^2 \right) \\ &= \frac{1}{\kappa _2} \ln \left[ \frac{2}{(1+\beta -2 \kappa _2 /\kappa ) \, \varPsi _1} \right]. \end{aligned}$$
(66)

Equation (65) corresponds to the analytical solution for \(\varLambda\), whereas Eq. (66) corresponds to the approximated analytical solution provided as Eq. (25) in the main text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, O.M., Scheibert, J. Propagation Length of Self-healing Slip Pulses at the Onset of Sliding: A Toy Model. Tribol Lett 56, 553–562 (2014). https://doi.org/10.1007/s11249-014-0432-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0432-y

Keywords

Navigation