Skip to main content
Log in

Friction-Induced Vibration by Stribeck’s Law: Application to Wiper Blade Squeal Noise

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This paper is concerned with the squeal noise of a wiper/windscreen contact. It is shown that squeal noise stems from friction-induced self-excited vibrations in the context of Stribeck’s law for friction coefficient. The study is specifically focussed on the instability range of velocities and not on the amplitude of limit cycles. The studied dynamic system consists of a single degree-of-freedom mass-spring-damper oscillator submitted to a velocity-dependent frictional force which follows the Stribeck law. The local stability is analyzed by the first Lyapunov method and results in a stability criterion. Experiments have been performed on a glass/elastomer contact lubricated with water. The tribometer ‘LUG’ provides measurements of the vibrational velocity and friction force versus sliding speed. It is found that the instability appears during the transition between boundary and elastohydrodynamic regimes where the negative gradient of the friction versus velocity curve is steep. The apparition and vanishing of instability are correctly predicted by the steady-state stability criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Koenen, A., Sanon, A.: Tribological and vibroacoustic behavior of a contact between rubber and glass (application to wiper blade). Tribol. Int. 40, 1484–1491 (2007)

    Article  CAS  Google Scholar 

  2. Chevennement-Roux, C., Dreher, T., Alliot, P., Aubry, E., Laine, J.P., Jezequel, L.: Flexible wiper system dynamic instabilities: modelling and experimental validation. Exp. Mech. 47, 201–210 (2007)

    Article  Google Scholar 

  3. Fujii, Y.: Method for measuring transient friction coefficients for rubber wiper blades on glass surface. Tribol. Int. 41, 17–23 (2008)

    Article  CAS  Google Scholar 

  4. Bodai, G., Goda, T.J.: Friction force measurement at windscreen wiper/glass contact. Tribol. Lett. 45, 515–523 (2012)

    Article  Google Scholar 

  5. Akay, A.: Acoustics of friction. J. Acoust. Soc. Am. 111, 1525–1548 (2002)

    Article  CAS  Google Scholar 

  6. Butlin, T., Woodhouse, J.: A systematic experimental study of squeal initiation. J. Sound Vibrat. 330, 5077–5095 (2011)

    Article  Google Scholar 

  7. Vola, D., Raous, M., Martins, J.A.C.: Friction and instability of steady sliding: squeal of rubber/glass contact. Int. J. Numer. Methods Eng. 46, 1699–1720 (1999)

    Article  Google Scholar 

  8. Nayfeh, A.H., Mook, D.T.: Nonlinear oscillations. Wiley Interscience. 704 p. (1979).

  9. Ibrahim, R.A.: Friction-induced vibration, chatter, squeal, and chaos. Appl. Mech. Rev. 47, 209–253 (1994)

    Article  Google Scholar 

  10. Denny, M.: Stick-slip motion: an important example of self-excited oscillation. Eur. J. Phys. 25, 311–322 (2004)

    Article  Google Scholar 

  11. Den Hartog, J.P.: Forced vibrations with combined coulomb and viscous friction. Trans. ASME 53, 107–115 (1931)

    Google Scholar 

  12. Nakano, K.: Two dimensionless parameters controlling the occurence of stick-slip motion in a 1-DOF system with coulomb friction. Tribol. Lett. 24, 91–98 (2006)

    Article  Google Scholar 

  13. Scheibert, J., Dysthe, D.K.: Role of friction-induced torque in stick-slip motion. Europhys. Lett. 92, 54001 (2010)

    Article  Google Scholar 

  14. Ruina, A.L.: Instability and state variable friction laws. J. Geophys. Res. 88, 359–370 (1983)

    Article  Google Scholar 

  15. Baumberger, T., Berthoud, P., Caroli, C.: Physical analysis of the state-and rate-dependent friction law. II. Dynamic friction. Phys. Rev. B 60, 3928–3939 (1999)

    Article  CAS  Google Scholar 

  16. Dieterich, J.H.: Modeling of rock friction.1. Experimental results and constitutive equations. J. Geophys. Res. 84, 2161–2168 (1979)

    Article  Google Scholar 

  17. Rice, J.R., Ruina, A.L.: Stability of steady frictional slipping. J. Appl. Mech., Trans. of ASME. 50, 343–349 (1983)

    Article  Google Scholar 

  18. Baumberger, T., Caroli, C., Perrin, B., Ronsin, O.: Non-Linear analysis of the stick-slip bifurcation in the creep-controlled regime of dry friction. Phys. Rev. E 51, 4005–4010 (1995)

    Article  CAS  Google Scholar 

  19. Tromborg, J., Scheibert, J., Amundsen, D.S., Thogersen, K., Malthe-Sorenssen, A.: Transition from static to kinetic friction: insights from a 2D model. Phys. Rev. Lett. 107, 074301 (2011)

    Article  CAS  Google Scholar 

  20. Sugita, M., Yabuno, H., Yanagisawa, D.: Bifurcation phenomena of the reversal behavior of an automobile wiper blade. Nonlinear Dyn. 69, 1111–1123 (2012)

    Article  Google Scholar 

  21. Goto, S., Takahashi, H., Oya, T.: Clarification of the mechanism of wiper blade rubber squeal noise generation. JSAE Rev 22, 57–62 (2001)

    Article  Google Scholar 

  22. Deleau, F., Mazuyer, D., Koenen, A.: Sliding friction at elastomer/glass contact: influence of the wetting conditions and instability analysis. Tribol. Int. 42, 149–159 (2009)

    Article  CAS  Google Scholar 

  23. Tu, C.F., Fort, T.: A study of a fiber capstan friction. Part 1. Stribeck curves, part 2. Stick-slip phenomena. Tribol. Int. 37, 701–719 (2004)

    Article  CAS  Google Scholar 

  24. Heslot, F., Baumberger, T., Perrin, B., Caroli, B., Caroli, C.: Creep, stick-slip, and dry-friction dynamics: experiments and a heuristic model. Phys. Rev. E 49, 4973–4990 (1994)

    Article  Google Scholar 

  25. Dieterich, J.H.: Time-dependent friction and the mechanics of stick-slip. Pure Appl. Geophys. 116, 790–806 (1978)

    Article  Google Scholar 

  26. Gu, J.-C., Rice, J., Ruina, A.L., Tse, S.T.: Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction. J. Mech. Solids 32, 167–196 (1984)

    Article  Google Scholar 

  27. Smith, J.H., Woodhouse, J.: The tribology of rosin. J. Mech. Phys. Solids. 48, 1633–1681 (2000)

    Article  Google Scholar 

  28. Canudasde Vit, C., Olsson, H., Astrom, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Automat. Contr. 40, 419–425 (1995)

    Article  Google Scholar 

  29. Bongaerts, J.H.H., Fourtouni, K., Stokes, J.R.: Soft-tribology: lubrication in a compliant PDMS–PDMS contact. Tribol. Int. 40, 1531–1542 (2007)

    Article  CAS  Google Scholar 

  30. Papenhuyzen, P.J.: Wrijvingsproeven in verband met het slippen van autobadden. De Ingenieur V75 53, 75–81 (1938)

    Google Scholar 

  31. Polycarpou, A.A., Soom, A.: Application of a two-dimensional model of continuous sliding friction to stick-slip. Wear 181–183, 32–41 (1995)

    Google Scholar 

  32. Galda, L., Pawlus, P., Sep, J.: Dimples shape and distribution effect on characteristics of Stribeck curve. Tribol. Int. 42, 1505–1512 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by French government support through the RIBEG project (FUI 8 program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Le Rouzic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Rouzic, J., Le Bot, A., Perret-Liaudet, J. et al. Friction-Induced Vibration by Stribeck’s Law: Application to Wiper Blade Squeal Noise. Tribol Lett 49, 563–572 (2013). https://doi.org/10.1007/s11249-012-0100-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-0100-z

Keywords

Navigation