Skip to main content
Log in

Study of Physiological Parameters and Comfort Sensations During Friction Contacts of the Human Skin

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

As a living tissue, human skin has a biological response when it rubs against other external surfaces, among which, the comfort sensation attributes during friction contact make an important contribution to one’s quality of life. However, limited quantitative parameters can be used to describe the sensations, and they have rarely been studied scientifically. In this paper, the comfort sensations of human volar forearm skin during friction testing were studied by biofeedback of physiological and psychological responses. A UMT-II tribometer was used to measure tribological parameters of the skin under different normal force of 0.2 and 1.0 N, and corresponding comfort sensations of the skin were assessed quantitatively using BioTrace + for physiological signals monitoring: skin conductance, skin temperature, and electroencephalogram (EEG). The psychological responses were characterized qualitatively according to the volunteers’ sensations of pain, drag, and heat. Results showed that the tangential force, amplitudes of EEG signals and psychological responses increased with the normal force increasing. The friction coefficients, differences of skin conductance and temperature, amplitudes of EEG signals, and psychological responses gradually decreased with the number of friction tests increasing. The discomfort sensations of human skin were strongly related to friction conditions, which intensified under the large normal force, and gradually weakened with the number of tests increasing. The physiological responses were in accord with the psychological ones. The comfort sensations during friction testing can be assessed quantitatively by the physiological signals of conductance, temperature, and EEG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cardello, A.V., Winterhalter, C., Schutz, H.G.: Predicting the handle and comfort of military clothing fabrics from sensory and instrumental data: development and application of new psychophysical methods. Textile Res. J. 73, 221–237 (2003)

    Article  CAS  Google Scholar 

  2. Zhang, M., Mak, A.F.T.: In vivo friction properties of human skin. Prosthet. Orthot. Int. 23, 135–141 (1999)

    CAS  Google Scholar 

  3. Lyon, C.C., Kulkarni, J., Zimerson, E., Ross, E.V., Beck, M.H.: Skin disorders in amputees. J. Am. Acad. Dermatol. 42, 501–507 (2000)

    Article  CAS  Google Scholar 

  4. Vallbo, Å., Olausson, H., Wessberg, J.: Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J. Neurophysiol. 81, 2753–2763 (1999)

    CAS  Google Scholar 

  5. Guest, S., Essick, G., Dessirier, J.M., Blot, K.: Sensory and affective judgments of skin during inter- and intrapersonal touch. Acta Psychol. 130, 115–126 (2009)

    Article  Google Scholar 

  6. Essick, G., McGlone, F., Dancer, C., Fabricant, D.: Quantitative assessment of pleasant touch. Neurosci. Biobehav. 34, 192–203 (2010)

    Article  Google Scholar 

  7. Wong, A.S.W., Li, Y.: Relationship between thermophysiological responses and psychological thermal perception during exercise wearing aerobic wear. Therm. Biol. 29, 791–796 (2004)

    Article  Google Scholar 

  8. Olausson, H., Wessberg, J., Kakuda, N.: Tactile directional sensibility: peripheral neural mechanisms in man. Brain Res. 866, 178–187 (2000)

    Article  CAS  Google Scholar 

  9. Naylor, P.F.D.: The skin surface and friction. Br. J. Dermatol. 67, 239–248 (1955)

    Article  CAS  Google Scholar 

  10. Sivamani, R.K., Goodman, J., Gitis, N.V., Maibach, H.I.: Friction coefficient of skin in real-time. Skin Res Technol. 9, 235–239 (2003)

    Article  Google Scholar 

  11. Derler, S., Gerhardt, L.-C.: Tribology of skin: review and analysis of experimental results for the friction coefficient of human skin. Tribol. Lett. 45, 1–27 (2012)

    Article  Google Scholar 

  12. Kwiakowska, M., Franklinm, S.E., Hendriks, C.P., Kwiatkowski, K.: Friction and deformation behaviour of human skin. Wear 267, 1264–1273 (2009)

    Article  Google Scholar 

  13. Pailler-Mattei, C., Nicolic, S., Pirot, F., Vargiolu, R., Zahouani, H.: A new approach to describe the skin surface physical properties in vivo. Colloids Surf. B Biointerfaces 68, 200–206 (2009)

    Article  CAS  Google Scholar 

  14. Asserin, J.: Measurement of the friction coefficient of the human skin in vivo—quantification of the cutaneous smoothness. Colloids Surf. B Biointerfaces 19, 1–12 (2000)

    Article  CAS  Google Scholar 

  15. Elkhyat, A., Courderot-Masuyer, C., Gharbi, T., Humbert, P.: Influence of the hydrophobic and hydrophilic characteristics of sliding and slider surfaces on friction coefficient: in vivo human skin friction comparison. Skin Res Technol. 10, 215–221 (2004)

    Article  Google Scholar 

  16. Zahouani, H., Vargiolu, R., Boyer, G., Pailler-Mattei, C., Laquièze, L., Mavon, A.: Friction noise of human skin in vivo. Wear 267, 1274–1280 (2009)

    Article  CAS  Google Scholar 

  17. Cua, A.B., Wilhelm, K.-P., Maibach, H.I.: Skin surface lipid and skin friction: relation to age, sex, and anatomical region. Skin Pharmacol. 8, 246–251 (1995)

    Article  CAS  Google Scholar 

  18. Elsner, P., Wilhelm, D., Maibach, H.I.: Friction properties of human forearm and vulva skin: influence of age and correlation with trans-epidermal water loss and capacitance. Dermatology 181, 88–91 (1990)

    Article  CAS  Google Scholar 

  19. Sivamani, R.K., Wu, G.C., Gitis, N.V., Maibach, H.I.: Tribological testing of skin products: gender, age, and ethnicity on the volar forearm. Skin Res Technol. 9, 299–305 (2003)

    Article  Google Scholar 

  20. Lodén, M., Olsson, H., Axéll, T., Linde, Y.W.: Friction capacitance and transepidermal water loss in dry atopic and normal skin. Br. J. Dermatol. 126, 137–141 (1992)

    Article  Google Scholar 

  21. Adams, M.J., Briscoe, B.J., Johnson, S.A.: Friction and lubrication of human skin. Tribol. Lett. 26, 239–253 (2007)

    Article  CAS  Google Scholar 

  22. Bueno, M.A., Lamy, B., Renner, M., Viallier-Raynard, P.: Tribological investigation of textile fabrics. Wear 195, 192–200 (1996)

    Article  CAS  Google Scholar 

  23. Derler, S., Schrade, U., Gerhardt, L.C.: Tribology of human skin and mechanical skin equivalents in contact with textiles. Wear 263, 1112–1116 (2007)

    Article  CAS  Google Scholar 

  24. Ramkumar, S.S., Wood, D.J., Fox, K., Harlock, S.C.: Developing a polymeric human finger sensor to study the frictional properties of textiles, Part I: artificial finger development. Textile Res. J. 73, 469–473 (2003)

    Article  CAS  Google Scholar 

  25. Bhushan, B., Wei, G.H., Haddad, P.: Friction and wear studies of human hair and skin. Wear 259, 1012–1021 (2005)

    Article  CAS  Google Scholar 

  26. Fradette, J., Larouche, D., Fugère, C., Guignard, R.: Normal human merkel cells are present in epidermal cell populations isolated and cultured from glabrous and hairy skin sites. J. Invest. Dermatol. 120, 313–317 (2003)

    Article  CAS  Google Scholar 

  27. Nakano, K.: Information regarding tactile sensation in friction signals with high uncertainty. Tribol. Int. 41, 1114–1125 (2008)

    Article  CAS  Google Scholar 

  28. Holmes, G.L., Lombroso, C.T.: Prognostic value of background patterns in the neonatal EEG. J. Clin. Neurophysiol. 10, 323–352 (1993)

    Article  CAS  Google Scholar 

  29. Hunter, J.A.A., Mcvittie, E.V.A., Comaish, J.S.: Light and electron microscopic studies of physical injury to the skin–II. Friction. Br. J. Dermatol. 90, 491–499 (1974)

    Article  CAS  Google Scholar 

  30. Huang, C.Z.: Dermatovenereology. Huazhong University Publishing House, Wuhan (2010)

    Google Scholar 

  31. Cooke, J.P., Creager, M.A., Osmundson, P.J., Shepherd, J.T.: Sex differences in control of blood flow. Circulation 82, 1607–1615 (1990)

    Article  CAS  Google Scholar 

  32. Dowson, D.: Tribology and the skin surface. In: Wilhelm, K.-P., Elsner, P., Berardesca, E., Maibach, H.I. (eds.) Bioengineering of the Skin: Skin Surface Imaging and Analysis, pp. 159–179. CRC Press, Boca Raton (1997)

    Google Scholar 

  33. Li, W., Qu, S.X., Zhou, Z.R.: Reciprocating sliding behavior of human skin in vivo at lower number of cycles. Tribol. Lett. 23, 165–170 (2006)

    Article  Google Scholar 

  34. Leveque, J.L., Derigal, J.: Impedance methods for studying skin moisturization. J. Soc. Cosmet. Chem. 34, 419–428 (1983)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 51175440 and No. 71102113) and Fundamental Research Funds for the Central Universities (No. SWJTU11ZT05). In addition, the authors would like to thank all volunteers for attending the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongrong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Pang, Q., Jiang, Y. et al. Study of Physiological Parameters and Comfort Sensations During Friction Contacts of the Human Skin. Tribol Lett 48, 293–304 (2012). https://doi.org/10.1007/s11249-012-0023-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-0023-8

Keywords

Navigation