Skip to main content
Log in

Size, Shape, and Elemental Composition of Airborne Wear Particles from Disc Brake Materials

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

During braking, both the rotor and pads experience wear, generating particles that may become airborne. In field tests, it is difficult to distinguish these particles from others in the surrounding environment, so it is preferable to use laboratory test stands to study the amount of airborne wear particles generated. The purpose of this work is to investigate the possibility of separate, capture, and analyze airborne wear particles generated by a disc brake in a disc brake assembly test stand. This test stand used allows the cleanliness of the air surrounding the test specimens to be controlled and thus the airborne portion of the wear particles to be studied separately. One pair each of low-metallic (LM) and non-asbestos organic (NAO) brake pads was tested against grey cast iron rotors. Before testing, the elemental contents of the brake materials were analyzed using glow discharge optical emission spectroscopy (GDOES). The concentration and size of airborne wear particles were measured online during testing. In addition, airborne wear particles were collected on filters during the tests and afterward analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The analyzed wear particles contained elements such as iron, titanium, zinc, barium, manganese, and copper. Both the low-metallic and non-asbestos organic type of brake pads tested display a bimodal size distribution with peaks at 280 and 350 nm. Most of the airborne particles generated have a diameter smaller than 2.5 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Katsouyanni, K., Touloumi, G., Samoli, E., Gryparis, A., Le Tertre, A., Monopolis, Y., Rossi, G., Zmirou, D.: Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 project. Epidemiology 12, 521–531 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. Samet, J.M., Dominici, F., Curriero, F.C., Coursac, I., Zeger, S.L.: Fine particulate air pollution and mortality in 20 U.S. cities 1987–1994. N. Engl. J. Med. 343, 1742–1749 (2000)

    Article  CAS  PubMed  Google Scholar 

  3. Pope, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D.: Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287, 1132–1141 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. Karlsson, H.: Particularly harmful particles: a study of airborne particles with a focus on genotoxicity and oxidative stress. Doctorial thesis, Department of Biosciences and Nutrition, Stockholm, Karolinska institutet, Solna, Sweden (2006)

  5. Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D., Yang, H.: Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part. Fibre Toxicol. 2, 1–35 (2005)

    Article  Google Scholar 

  6. Ghio, A.J., Silbajoris, R., Carson, J.L., Samet, J.M.: Biologic effects of oil fly ash. Environ. Health Persp. 110, 89–94 (2002)

    Google Scholar 

  7. Ghio, A.J.: Disruption of iron homeostasis and lung disease. Biochim. Biophys. Acta 1790, 731–739 (2009)

    CAS  PubMed  Google Scholar 

  8. Querol, X., Alastuey, A., Ruiz, C.R., Artiñano, B., Hansson, H.C., Harrison, R.M., Buringh, E., Ten Brink, H.M., Lutz, M., Bruckmann, P., Straeh, P., Schneider, J.: Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos. Environ. 38, 6547–6555 (2004)

    Article  CAS  Google Scholar 

  9. Gehrig, R., Hill, M., Buchmann, B.: Separate determination of PM10 emission factors of road traffic for tailpipe emissions and emissions from abrasion and resuspension processes. Int. J. Environ. Pollut. 22, 312–325 (2004)

    CAS  Google Scholar 

  10. Abu-Allaban, M., Gillies, J.A., Gertler, A.W., Clayton, R., Proffitt, D.: Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles. Atmos. Environ. 37, 5283–5293 (2003)

    Article  CAS  Google Scholar 

  11. Hjortenkrans, D., Bergbäck, B., Häggerud, A.: Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005. Environ. Sci. Technol. 41, 5224–5230 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. Iijima, A., Sato, K., Yano, K., Kato, M., Kozawa, K., Furuta, N.: Emission factor for antimony in brake abrasion dust as one of the major atmospheric antimony sources. Environ. Sci. Technol. 42, 2937–2942 (2008)

    Article  CAS  PubMed  Google Scholar 

  13. Furusjö, E., Sternbeck, J., Palm, A., Cousins, I.: PM10 source characterization at urban and highway roadside locations. Sci. Total Environ. 387, 206–219 (2007)

    Article  PubMed  Google Scholar 

  14. Chan, D., Stachowiak, G.W.: Review of automotive brake friction materials. Proc. Inst. Mech. Eng. D J. Aut. Eng. 218, 953–966 (2004)

    Article  Google Scholar 

  15. Sanders, P.G., Xu, N., Dalka, T.M., Marico, M.: Airborne brake wear debris: size distributions, composition of dynamometer and vehicle test. Environ. Sci. Technol. 37, 4060–4069 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. Wahlström, J., Söderberg, A., Olander, L., Olofsson, U.: A disc brake test stand for measurements of airborne wear particles. Lubr. Sci 21, 241–252 (2009)

    Article  Google Scholar 

  17. von Uexküll, O., Skerfving, S., Doyle, R., Braungart, M.: Antimony in brake pads: a carcinogenic component? J. Cleaner Prod. 13, 19–31 (2003)

    Article  Google Scholar 

  18. Mosleh, M., Blau, P.J., Dumitrescu, D.: Characteristics and morphology of wear particles from laboratory testing of disc brake materials. Wear 256, 1128–1134 (2004)

    Article  CAS  Google Scholar 

  19. Peters, T.M., Ott, D., O’Shaughnessy, P.T.: Comparison of the Grimm 1.108 and 1.109 Portable Aerosol Spectrometer to the TSI 3321 Aerodynamic Particle Sizer for dry particles. Ann. Occup. Hyg. 50, 843–850 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. Liu, Y., Daum, P.H.: The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters. J. Aerosol Sci. 31, 945–957 (2000)

    Article  CAS  Google Scholar 

  21. Zhu, Y., Yu, N., Kuhn, T., Hinds, W.: Field comparison of P-Trak and condensation particle counters. Aerosol Sci. Tech. 40, 422–430 (2006)

    Article  CAS  Google Scholar 

  22. Cheng, Y.H.: Comparison of the TSI Model 8520 and Grimm Series 1.108 portable aerosol instruments used to monitor particulate matter in an iron foundry. J. Occup. Environ. Hyg. 5, 157–168 (2008)

    Article  CAS  PubMed  Google Scholar 

  23. Bergseth, E.: Influence of surface topography and lubricant design in gear contacts. Licentiate thesis, Department of Machine Design, The Royal Institute of Technology, Stockholm (2009)

  24. ISO 14707:2000: Glow discharge optical emission spectroscopy (GD-OES): introduction for use. International Organization for Standardization, Geneva (2001)

    Google Scholar 

  25. Riediker, M., Gasser, M., Perrenoud, A., Gehr, P., Rothen-Rutishauser, B.: A system to test the toxicity of brake wear particles. In: 12th International ETH-Conference on Combustion Generated Nanoparticles, 23–25 June 2008, Zurich, Switzerland (2008)

  26. Wahlström J, Söderberg A, Olander L, Jansson A, Olofsson U. Airborne wear particles from passenger car disc brakes: a comparison of measurements from field tests, a disc brake assembly test stand, and a pin-on-disc machine. Proc. IMechE Part J J. Eng. Tribol. 223 (2009, in press)

  27. Iijima, A., Sato, K., Yano, K., Taga, H., Kato, M., Kimura, H., Furuta, N.: Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter. Atmos. Environ. 41, 4908–4919 (2007)

    Article  CAS  Google Scholar 

  28. Thorpe, A., Harrison, R.M.: Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci. Total Environ. 400, 270–282 (2008)

    Article  CAS  PubMed  Google Scholar 

  29. Oberdörster, G.: Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health 74, 1–8 (2001)

    Article  PubMed  Google Scholar 

  30. Ingo, G.M., Uffizi, M.D., Falso, G., Bultrini, G., Padeletti, G.: Thermal and microchemical investigation of automotive brake pad wear residues. Thermochim. Acta 418, 61–68 (2004)

    Article  CAS  Google Scholar 

  31. Wahlström, J., Söderberg, A., Olander, L., Jansson, A., Olofsson, U.: A pin-on-disc simulation of airborne wear particles from disc brakes. J. Wear (2009, in press)

Download references

Acknowledgments

The authors acknowledge valuable help from Wubeshet Sahle (Royal Institute of Technology) with SEM/EDX, Mats Randelius (Swerea KIMAB) with GDOES, and Anders Jansson (Stockholm University) with filters and pumps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Wahlström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahlström, J., Olander, L. & Olofsson, U. Size, Shape, and Elemental Composition of Airborne Wear Particles from Disc Brake Materials. Tribol Lett 38, 15–24 (2010). https://doi.org/10.1007/s11249-009-9564-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9564-x

Keywords

Navigation