Skip to main content

Advertisement

Log in

The Impact of Composition in Non-steel and Low-Steel Type Friction Materials on Airborne Brake Wear Particulate Emission

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this work, airborne brake wear particulate matter (PM) emissions from a brake system were investigated by time-resolved and temperature-dependent measurement using a dynamometer. The measurement was performed for representative friction materials, 3 low-steel (LS) and 4 non-steel (NS), which are currently in worldwide use. The PM emission factor was found to be varied as large as by one order of magnitude depending on the composition of friction materials(pads). The airborne particle mass emissions from the LS materials ranged from 1.88 to 3.14 mg/km/vehicle, while the emissions from the NS ranged from 0.3 to 2.34 mg/km/vehicle, which is, in general, smaller than the LS. The time-resolved data imply that particle emissions in the extra-high-speed region of the WLTC cycle, where friction occurs at high temperature (Tdisk > 150 °C), is much higher than in the low-speed region, and determines the total PM mass emission factor. It was found that the friction materials containing metals such as Cu and Sn (LS-2/-3 and NS-4/-5) exhibited a lower PM emission factor. This result suggests that copper and tin, which forms an effective lubricating tribolayer in the interface between the pad and disk at high temperature, remarkably reduces PM emissions. It has been also found that the surface roughness of worn brake pads is positively proportional to PM emissions according to surface topography analysis, which is consistent with composition effect. These findings suggest that tribological engineering to provide sliding frictional behavior at elevated temperature is crucial to reducing PM emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LS:

Low steel

NS:

Non-steel

XRF:

X-ray fluorescence spectrometer

CoF:

Coefficient of friction

WLTC:

Worldwide harmonized Light duty driving Test Cycle

LACT:

Los Angeles City Traffic

EF:

Emission factor

PN:

Particle number

XRD:

X-ray diffraction

FE-SEM:

Field emission scanning electron microscope

TEM:

Transmission electron microscope

EDX:

Energy-dispersive x-ray spectroscopy

PM:

Particulate matters

References

  1. Grigoratos, T., Martini, G.: Brake wear particle emissions: a review. Environ. Sci. Pollut. Res. 22(4), 2491–2504 (2015)

    Article  CAS  Google Scholar 

  2. Bukowiecki, N., Lienemann, P., Hill, M., Furger, M., Richard, A., Amato, F., Prévôt, A.S.H., Baltensperger, U., Buchmann, B., Gehrig, R.: PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland. Atmos. Environ. 44(19), 2330–2340 (2010)

    Article  CAS  Google Scholar 

  3. Harrison, R.M., Jones, A.M., Gietl, J., Yin, J., Green, D.C.: Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements. Environ. Sci. Technol. 46(12), 6523–6529 (2012)

    Article  CAS  Google Scholar 

  4. Garg, B.D., Cadle, S.H., Mulawa, P.A., Groblicki, P.J., Laroo, C., Parr, G.A.: Brake wear particulate matter emissions. Environ. Sci. Technol. 34(21), 4463–4469 (2000)

    Article  CAS  Google Scholar 

  5. Sanders, P.G., Xu, N., Dalka, T.M., Maricq, M.M.: Airborne brake wear debris: size distributions, composition, and a comparison of dynamometer and vehicle tests. Environ. Sci. Technol. 37(18), 4060–4069 (2003)

    Article  CAS  Google Scholar 

  6. Kumar, P., Pirjola, L., Ketzel, M., Harrison, R.M.: Nanoparticle emissions from 11 non-vehicle exhaust sources: a review. Atmo. Environ. 67, 252–277 (2013)

    Article  CAS  Google Scholar 

  7. Brunekreef, B., Forsberg, B.: Epidemiological evidence of effects of coarse airborne particles on health. Eur. Respir. J. 26, 309–318 (2005)

    Article  CAS  Google Scholar 

  8. Iijima, A., Sato, K., Yano, K., Kato, M., Kozawa, K., Furuta, N.: Emission factor for antimony in brake abrasion dust as one of the major atmospheric antimony sources. Environ. Sci. Technol. 42(8), 2937–2942 (2008)

    Article  CAS  Google Scholar 

  9. Iijima, A., Sato, K., Yano, K., Kato, M., Tago, H., Kato, M., Kimura, H., Furuta, N.: Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter. Atmos. Environ. 41(23), 4908–4919 (2007)

    Article  CAS  Google Scholar 

  10. Kwak, J., Lee, S., Lee, S.: On-road and laboratory investigations on non-exhaust ultrafine particles from the interaction between the tire and road pavement under braking conditions. Atmos. Environ. 97, 195–205 (2014)

    Article  CAS  Google Scholar 

  11. Nosko, O., Olofsson, U.: Quantification of ultrafine airborne particulate matter generated by the wear of car brake materials. Wear 374–375, 92–96 (2017)

    Article  Google Scholar 

  12. Alemani, M., Wahlström, J., Olofsson, U.: On the influence of car brake system parameters on particulate matter emissions. Wear 396–397, 67–74 (2018)

    Article  Google Scholar 

  13. Hagino, H., Oyama, M., Sasaki, S.: Airborne brake wear particle emission due to braking and accelerating. Wear 334–335, 44–48 (2015)

    Article  Google Scholar 

  14. PMP-Group Particle Measurement Program (PMP) of the United Nations Working Party on Pollution and Energy (UNECE−GRPE). https://wiki.unece.org/pages/viewpage.action?pageId=2523173.

  15. Timmers, V.R.J.H., Achten, P.A.J.: Non-exhaust PM emissions from electric vehicles. Atmos. Environ. 134, 10–17 (2016)

    Article  CAS  Google Scholar 

  16. Baron, P.A., Willeke, K., Kulkarni, P.: Aerosol Measurement: Principles, Techniques, and Applications. Wiley, New York (2011)

    Google Scholar 

  17. Mathissen, M., Grochowicz, J., Schmidt, C., Vogt, R., FarwickzumHagen, F.H., Grabiec, T., Steven, H., Grigoratos, T.: A novel real-world braking cycle for studying brake wear particle emissions. Wear 414–415, 219–226 (2018)

    Article  Google Scholar 

  18. zum Hagen, F.H.F., Mathissen, M., Grabiec, T., Hennicke, T., Rettig, M., Grochowicz, J., Vogt, R., Benter, T.: Study of brake wear particle emissions: impact of braking and cruising conditions. Environ. Sci. Technol. 53, 5143–5150 (2019)

    Article  CAS  Google Scholar 

  19. Chan, D., Stachowiak, G.W.: Review of automotive brake friction materials. Proc. Inst. Mech. Eng. D 218, 953–966 (2004)

    Article  Google Scholar 

  20. Kukutschova, J., Roubíceka, V., Malachova, K., Pavlíckova, Z., Holusab, R., Kubackova, J., Micka, V., Mac Crimmon, D., Filip, P.: Wear mechanism in automotive brake materials, wear debris and its potential environmental impact. Wear 267, 807–817 (2009)

    Article  CAS  Google Scholar 

  21. Kukutschova, J., Roubicek, V., Maslan, M., Jancik, D., Slovak, V., Malachova, K., Pavlickova, Z., Filip, P.: Wear performance and wear debris of semimetallic auto- motive brake materials. Wear 268, 86–93 (2010)

    Article  CAS  Google Scholar 

  22. Osterle, W., Prietzel, C., Kloß, H., Dmitriev, A.I.: On the role of copper in brake friction materials. Tribol. Int. 43, 2317–2326 (2010)

    Article  Google Scholar 

  23. Thorpe, A., Harrison, R.M.: Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci. Total Environ. 400, 270–282 (2008)

    Article  CAS  Google Scholar 

  24. Wahlström, J., Olander, L., Olofsson, L.U.: Size, shape, and elemental composition of airborne wear particles from disc brake materials. Tribol. Lett. 38, 15–24 (2010)

    Article  Google Scholar 

  25. Lawrence, S., Sokhi, R., Ravindra, K., Mao, H., Prain, H.D., Bull, I.D.: Source apportionment of traffic emissions of particulate matter using tunnel measurements. Atmos. Environ. 77, 548–557 (2013)

    Article  CAS  Google Scholar 

  26. Hagino, H., Oyama, M., Sasaki, S.: Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles. Atmos Environ 131, 269–278 (2016)

    Article  CAS  Google Scholar 

  27. Perricone, G., Matějka, V., Alemani, M., Valota, G., Bonfanti, A., Ciottia, A., Olofsson, U., Söderberg, A., Wahlström, J., Nosko, O., Straffelini, G., Gialanella, S., Ibrahim, M.: A concept for reducing PM10 emissions for car brakes by 50%. Wear 396–397, 135–145 (2018)

    Article  Google Scholar 

  28. Gardos, M. N.: The problem-solving role of basic science in solid lubrication. In: Proceedings of the new directions in tribology. London (1997)

  29. Kasem, H., Bonnamy, S., Berthier, Y., Jacquemard, P.: Tribological, physicochemical and thermal study of the abrupt friction transition during carbon/carbon composite friction. Wear 267, 846–852 (2009)

    Article  CAS  Google Scholar 

  30. Gottstein, G., Zabardjadi, D., Mecking, H.: Dynamic recrystallization in tension-deformed copper single crystals. Metal. Sci. 13, 223–227 (1979)

    Article  CAS  Google Scholar 

  31. Luo, J., Mei, Z., Tian, W., Wang, Z.: Diminishing of work hardening in electroformed polycrystalline copper with nano-sized and uf-sized twins. Mater. Sci. Eng. A 441, 240–282 (2006)

    Article  Google Scholar 

  32. Rabinowicz, E.: Friction and Wear of Materials, 2nd edn. Willey, New York (1995)

    Google Scholar 

  33. Jang, H., Ko, K., Kim, S., Basch, R., Fash, J.: The effect of metal fibers on the friction performance of automotive brake friction materials. Wear 256, 406–414 (2004)

    Article  CAS  Google Scholar 

  34. Jang, H., Yoon, J.H., Kim, S.J., Lee, J.Y., Park, H.D.: The effect of the composition and microstructure of gray cast iron on preferential wear during parasitic drag and on intrinsic damping capacity, SAE Technical Papers, SAE Technical Paper (2003).

  35. Jiang, J., Arnell, R.D.: The effect of substrate surface roughness on the wear of DLC coatings. Wear 239, 9 (2000)

    Article  Google Scholar 

  36. Lee, S., Jang, H.: Effect of plateau distribution on friction instability of brake friction materials. Wear 400, 1–9 (2018)

    Article  Google Scholar 

  37. Massi, F., Berthier, Y., Baillet, L.: Contact surface topography and system dynamics of brake squeal. Wear 265, 1784–1792 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported under the program of “Development of the high-performance brake for passenger car and commercial vehicle to reduce particulate matter” (20003598) by Ministry of Trade, Industry, and Energy of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Young Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4966 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SH., Shim, W., Kwon, SU. et al. The Impact of Composition in Non-steel and Low-Steel Type Friction Materials on Airborne Brake Wear Particulate Emission. Tribol Lett 68, 118 (2020). https://doi.org/10.1007/s11249-020-01361-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01361-2

Keywords

Navigation