Skip to main content
Log in

Effects of Tail Group and Chain Length on the Tribological Behaviors of Self-Assembled Dual-Layer Films in Atmosphere and in Vacuum

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In the present study, three kinds of self-assembled dual-layer films with various tail groups and chain length were prepared by adsorption of different carboxylic acids (stearic acid, STA; propionic acid, PPA; and phenylacetic acid, PAA) to the top of 3-aminopropyltriethoxysilane (APS) film on silicon surface. Using an atomic force microscopy, the films were found to reveal smaller adhesion and friction forces in vacuum than in atmosphere. Due to the effect of the adsorbed water layer on the samples, the more hydrophilic film exhibited the larger difference between the friction forces in vacuum and in atmosphere. For the dual-layer films either in atmosphere or in vacuum, the densely packed long chains can lead to lower friction than the poor-packed short chains, and the tail phenyl groups may induce higher friction than the methyl groups. In the initial stage of nanowear process by a diamond tip, a series of hillocks were observed on silicon surface along the scratching line. It was found that all the films can effectively enhance the antiwear ability of silicon surface and the self-assembled dual-layer film terminated by long chains (STA/APS) or –C6H5 groups (PAA/APS) performed much better than that terminated by short chains. Finally, the microwear abilities of the films were examined on a universal micro-tribometer. With the increase in normal load from 50 to 200 mN, the wear life varied for different films and good antiwear performances were also assigned to STA/APS and PAA/APS. This work can be indicative in the application of self-assembled films in the micro/nanoelectromechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chandross, M., Webb III, E.B., Stevens, M.J., Grest, G.S.: Systematic study of the effect of disorder on nanotribology of self-assembled monolayers. Phys. Rev. Lett. 93(16), 166103-1–166103-4 (2004). doi:10.1103/PhysRevLett.93.166103

    Article  ADS  CAS  Google Scholar 

  2. Maboudian, R.: Surface processes in MEMS technology. Surf. Sci. Rep. 30, 207–269 (1998). doi:10.1016/S0167-5729(97)00014-9

    Article  CAS  ADS  Google Scholar 

  3. Patton, S.T., Eapen, K.C., Zabinski, J.S.: Effects of adsorbed water and sample aging in air on the μN level adhesion force between Si(100) and silicon nitride. Tribol. Int. 34, 481–491 (2001). doi:10.1016/S0301-679X(01)00047-0

    Article  CAS  Google Scholar 

  4. Bhushan, B., Liu, H.: Micro/nanoscale tribological and mechanical characterization for MEMS/NEMS. Proc. SPIE 5392, 1–13 (2004). doi:10.1117/12.540419

    Article  ADS  CAS  Google Scholar 

  5. Volklein, F., Meier, A.: Microstructured vacuum gauges and their future perspectives. Vacuum 82, 420–430 (2008). doi:10.1016/j.vacuum.2007.08.001

    Article  CAS  Google Scholar 

  6. Wapelhorst, E., Hauschild, J.P., Muller, J.: Complex MEMS: a fully integrated TOF micro mass spectrometer. Sens. Actuators A 138, 22–27 (2007). doi:10.1016/j.sna.2007.04.041

    Article  CAS  Google Scholar 

  7. Hauschild, J.P., Wapelhorst, E., Muller, J.: Mass spectra measured by a fully integrated MEMS mass spectrometer. Int. J. Mass Spectrom. 264, 53–60 (2007). doi:10.1016/j.ijms.2007.03.014

    Article  CAS  ADS  Google Scholar 

  8. Randjelovi, D., Petropoulos, A., Kaltsas, G., et al.: Multipurpose MEMS thermal sensor based on thermopiles. Sens. Actuators A 141, 404–413 (2008). doi:10.1016/j.sna.2007.10.043

    Article  CAS  Google Scholar 

  9. Bhushan, B., Israelachvili, J.N., Landman, U.: Nanotribology: friction wear and lubrication at the atomic scale. Nature 374, 607–616 (1995)

    Article  ADS  CAS  Google Scholar 

  10. Ulman, A.: An Introduction to Ultrathin Organic Films: From Langmuir–Blodgett to Self-assembly. Academic Press, San Diego (1991)

    Google Scholar 

  11. Houston, J.E., Doelling, C.M., Vanderlick, T.K., Hu, Y., Scoles, G., Wenzl, I., et al.: Comparative study of the adhesion, friction, and mechanical properties of CF3- and CH3-terminated alkanethiol monolayers. Langmuir 21, 3926–3932 (2005). doi:10.1021/la046901t

    Article  PubMed  CAS  Google Scholar 

  12. Maboudian, R., Ashurst, W.R., Carraro, C.: Self-assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments. Sens. Actuators 82, 219–223 (2000). doi:10.1016/S0924-4247(99)00337-4

    Article  Google Scholar 

  13. Ren, S.L., Yang, S.R., Zhao, Y.P.: Micro- and macro-tribological study on a self-Assembled dual-layer film. Langmuir 19, 2763–2767 (2003). doi:10.1021/la026662e

    Article  CAS  Google Scholar 

  14. Ma, J.Q., Liu, J.X., Mo, Y.F., Bai, M.W.: Effect of multiply-alkylated cyclopentane (MAC) on durability and load-carrying capacity of self-assembled monolayers on silicon wafer. Colloids Surf. A 301, 481–489 (2007). doi:10.1016/j.colsurfa.2007.01.027

    Article  CAS  Google Scholar 

  15. Mo, Y.F., Zhu, M., Bai, M.W.: Preparation and nano/microtribological properties of perfluorododecanoic acid (PFDA)-3-aminopropyltriethoxysilane (APS) self-assembled dual-layer film deposited on silicon. Colloids Surf. A 322, 170–176 (2008). doi:10.1016/j.colsurfa.2008.03.004

    Article  CAS  Google Scholar 

  16. Torii, A., Sasaki, M., Hane, K., Okuma, S.: A method for determining the spring constant of cantilevers for atomic force microscopy. Meas. Sci. Technol. 7, 179–184 (1996). doi:10.1088/0957-0233/7/2/010

    Article  ADS  CAS  Google Scholar 

  17. Qian, L.M., Xiao, X.D.: Tip in situ chemical modification and its effects on tribological measurements. Langmuir 16, 662–670 (2000). doi:10.1021/la9905618

    Article  CAS  Google Scholar 

  18. Qian, L.M., Tian, F., Xiao, X.D.: Tribological properties of self-assembled monolayers and their substrates under various humid environments. Tribol. Lett. 15(3), 169–176 (2003). doi:10.1023/A:1024868532575

    Article  CAS  Google Scholar 

  19. Yu, J.X., Qian, L.M.: An improved calibration method for friction force in atomic force microscopy. Tribology 27(5), 472–476 (2007)

    Google Scholar 

  20. Flater, E.E., Ashurst, W.R., Carpick, R.W.: Nanotribology of octadecyltrichlorosilane monolayers and silicon: self-mated versus unmated interfaces and local packing density effects. Langmuir 23, 9242–9252 (2007). doi:10.1021/la063644e

    Article  PubMed  CAS  Google Scholar 

  21. Kaneko, R., Umemura, S., Hirana, M., Andoh, Y., Miyamoto, T., Fukui, S.: Recent progress in microtribology. Wear 200, 296–304 (1996). doi:10.1016/S0043-1648(96)07292-4

    Article  CAS  Google Scholar 

  22. Xiao, X.D., Hu, J., Charych, D.H., Salmeron, M.: Chain length dependence of the frictional properties of alkylsilane molecules self-assembled on mica studied by atomic force microscopy. Langmuir 12, 235–237 (1996). doi:10.1021/la950771u

    Article  CAS  Google Scholar 

  23. Bierbaum, K., Kinzler, M., Woll, C., Grunze, M.: A near edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy study of the film properties of self-assembled monolayers of organosilanes on oxidized Si(100). Langmuir 11, 512–518 (1995). doi:10.1021/la00002a025

    Article  CAS  Google Scholar 

  24. Ren, S.L., Yang, S.R., Zhao, Y.P., Yu, T.X., Xiao, X.D.: Preparation and characterization of an ultrahydrophobic surface based on a stearic acid self-assembled monolayer over polyethyleneimine thin films. Surf. Sci. 546, 64–74 (2003). doi:10.1016/j.susc.2003.09.018

    Article  ADS  CAS  Google Scholar 

  25. Chance, J.J., Purdy, W.C.: Fabrication of carboxylic acid-terminated thin films using poly(ethyleneimine) on a gold surface. Langmuir 13, 4487–4489 (1997). doi:10.1021/la970081l

    Article  CAS  Google Scholar 

  26. Iucci, G., Dettin, M., Battocchio, C., Gambaretto, R., Di Bello, C., Polzonetti, G.: Novel immobilizations of an adhesion peptide on the TiO2 surface: an XPS investigation. Mater. Sci. Eng. C 27, 1201–1206 (2007). doi:10.1016/j.msec.2006.09.038

    Article  CAS  Google Scholar 

  27. Angst, D.L., Simons, G.W.: Moisture absorption characteristics of organosiloxane self-assembled monolayers. Langmuir 7, 2236–2242 (1991). doi:10.1021/la00058a043

    Article  CAS  Google Scholar 

  28. Bhushan, B.: Nano- to microscale wear and mechanical characterization using scanning probe microscopy. Wear 251, 1105–1123 (2001). doi:10.1016/S0043-1648(01)00804-3

    Article  Google Scholar 

  29. Bhushan, B.: Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices. Microelectron. Eng. 84, 387–412 (2007). doi:10.1016/j.mee.2006.10.059

    Article  CAS  Google Scholar 

  30. Lio, A., Charych, D.H., Salmeron, M.: Comparative atomic force microscopy study of the chain length dependence of frictional properties of alkanethiols on gold and alkylsilanes on mica. J. Phys. Chem. B 101, 3800–3805 (1997). doi:10.1021/jp963918e

    Article  CAS  Google Scholar 

  31. Lee, S., Puck, A., Graupe, M., et al.: Structure, wettability, and frictional properties of phenyl-terminated self-assembled monolayers on gold. Langmuir 17, 7364–7370 (2001). doi:10.1021/la0111497

    Article  CAS  Google Scholar 

  32. Liang, Q., Tsui, O.K.C., Xu, Y., Li, H.N., Xiao, X.D.: Effect of C60 molecular rotation on nanotribology. Phys. Rev. Lett. 90(14), 146102-1–1461021-4 (2003). doi:10.1103/PhysRevLett.90.146102

    Article  ADS  CAS  Google Scholar 

  33. Zhang, L., Zarudi, I.: Towards a deeper understanding of plastic deformation in mono-crystalline silicon. Int. J. Mech. Sci. 43, 1985 (2001). doi:10.1016/S0020-7403(01)00024-8

    Article  MATH  Google Scholar 

  34. Youn, S.W., Kang, C.G.: Effect of nanoscratch conditions on both deformation behavior and wet-etching characteristics of silicon (100) surface. Wear 261, 328–337 (2006). doi:10.1016/j.wear.2005.11.007

    Article  CAS  Google Scholar 

  35. Miyake, S., Wang, M., Kim, J.: Nano mechanical processing of silicon by atomic force microscopy. Key Eng. Mater. 291–292, 401–406 (2005)

    Article  Google Scholar 

  36. Nakano, M., Ishida, T., Numata, T., Ando, Y., Sasak, S.: Tribological behavior of terphenyl self-asembled monolayer studied by a pin-on-plate method and friction force microscopy. J. Appl. Phys. 43(7B), 4619–4623 (2004). doi:10.1143/JJAP.43.4619

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful for the financial support from the Natural Science Foundation of China (50625515, 50521503), Specialized Research Fund for the Doctoral Program of Higher Education (20050613023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linmao Qian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, B., Qian, L., Yu, J. et al. Effects of Tail Group and Chain Length on the Tribological Behaviors of Self-Assembled Dual-Layer Films in Atmosphere and in Vacuum. Tribol Lett 34, 1–10 (2009). https://doi.org/10.1007/s11249-008-9363-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-008-9363-9

Keywords

Navigation