Skip to main content

Advertisement

Log in

Characterisation of eGFP-transgenic BALB/c mouse strain established by lentiviral transgenesis

  • Brief Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Lentiviral technology is a powerful tool for the creation of stable transgenic animals. However, uncertainties have remained whether constitutive promoters resist long-term silencing. We used concentrated HIV-1 based lentiviral vectors to create stable transgenic BALB/c mice by perivitelline injection. In our vectors eGFP expression was driven by the human EF1α promoter. The established transgenic animals were analyzed for eGFP expression by in vivo fluorescence imaging, PCR, histology and flow-cytometry. eGFP expression showed even distribution without mosaicism; however, tissue-dependent differences of eGFP expression were observed. Up to the sixth generation only one newborn showed eGFP inactivation. eGFP + transgenic bone marrow cells efficiently provided long-term haemopoietic repopulation in radiation chimeras, regenerating all bone marrow-derived lineages with eGFP + cells with distinct eGFP expression profiles. The established eGFP + BALB/c mouse strain is expected to be extremely useful in various immunological experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Bleul CC, Corbeaux T, Reuter A, Fisch P, Monting JS, Boehm T (2006) Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 441:992–996. doi:10.1038/nature04850

    Article  CAS  PubMed  Google Scholar 

  • Bovia F, Salmon P, Matthes T, Kvell K, Nguyen TH, Werner-Favre C, Barnet M, Nagy M, Leuba F, Arrighi JF, Piguet V, Trono D, Zubler RH (2003) Efficient transduction of primary human B lymphocytes and nondividing myeloma B cells with HIV-1-derived lentiviral vectors. Blood 101:1727–1733. doi:10.1182/blood-2001-12-0249

    Article  CAS  PubMed  Google Scholar 

  • Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17 + T helper cells. Cell 126:1121–1133. doi:10.1016/j.cell.2006.07.035

    Article  CAS  PubMed  Google Scholar 

  • Kvell K, Nguyen TH, Salmon P, Glauser F, Werner-Favre C, Barnet M, Schneider P, Trono D, Zubler RH (2005) Transduction of CpG DNA-stimulated primary human B cells with bicistronic lentivectors. Mol Ther 12:892–899. doi:10.1016/j.ymthe.2005.05.010

    Article  CAS  PubMed  Google Scholar 

  • Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Eagle AR, Vats D, Brombacher F, Ferrante AW, Chawla A (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447:1116–1120. doi:10.1038/nature05894

    Article  CAS  PubMed  Google Scholar 

  • Park F (2007) Lentiviral vectors: are they the future of animal transgenesis? Physiol Genomics 31:159–173. doi:10.1152/physiolgenomics.00069.2007

    Article  CAS  PubMed  Google Scholar 

  • Ritchie WA, Neil C, King T, Whitelaw CB (2007) Transgenic embryos and mice produced from low titre lentiviral vectors. Transgenic Res 16:661–664. doi:10.1007/s11248-007-9102-2

    Article  CAS  PubMed  Google Scholar 

  • Ryu BY, Orwig KE, Oatley JM, Lin CC, Chang LJ, Avarbock MR, Brinster RL (2007) Efficient generation of transgenic rats through the male germline using lentiviral transduction and transplantation of spermatogonial stem cells. J Androl 28:353–360. doi:10.2164/jandrol.106.001511

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Suzuki S, Millar DG, Unno M, Hara H, Calzascia T, Yamasaki S, Yokosuka T, Chen NJ, Elford AR, Suzuki J, Takeuchi A, Mirtsos C, Bouchard D, Ohashi PS, Yeh WC, Saito T (2006) A critical role for the innate immune signaling molecule IRAK-4 in T cell activation. Science 311:1927–1932. doi:10.1126/science.1124256

    Article  CAS  PubMed  Google Scholar 

  • Taketo M, Schroeder AC, Mobraaten LE, Gunning KB, Hanten G, Fox RR, Roderick TH, Stewart CL, Lilly F, Hansen CT et al (1991) FVB/N: an inbred mouse strain preferable for transgenic analyses. Proc Natl Acad Sci USA 88:2065–2069. doi:10.1073/pnas.88.6.2065

    Article  CAS  PubMed  Google Scholar 

  • Tezuka H, Abe Y, Iwata M, Takeuchi H, Ishikawa H, Matsushita M, Shiohara T, Akira S, Ohteki T (2007) Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 448:929–933. doi:10.1038/nature06033

    Article  CAS  PubMed  Google Scholar 

  • Vasey DB, Lillico SG, Sang HM, King TJ, Whitelaw CB (2009) CMV enhancer-promoter is preferentially active in exocrine cells in vivo. Transgenic Res 18:309–314. doi:10.1007/s11248-008-9235-y

    Article  CAS  PubMed  Google Scholar 

  • Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S (2008) CTLA-4 control over Foxp3 + regulatory T cell function. Science 322:271–275. doi:10.1126/science.1160062

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by OTKA T 049034 and OMFB-00118/2008 to BZS, OTKA PD 78310 to KK. TC is a recipient of the Bolyai János Postdoctoral Fellowship of the Hungarian Academy of Sciences. The authors thank G. Takács for the artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsuzsanna Bősze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kvell, K., Czömpöly, T., Hiripi, L. et al. Characterisation of eGFP-transgenic BALB/c mouse strain established by lentiviral transgenesis. Transgenic Res 19, 105–112 (2010). https://doi.org/10.1007/s11248-009-9288-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-009-9288-6

Keywords

Navigation