Skip to main content

Advertisement

Log in

CMV enhancer–promoter is preferentially active in exocrine cells in vivo

  • Brief Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The CMV enhancer–promoter sequence is often used as a transcriptional regulatory element in vector systems. We have used this control element to drive expression of GFP in a lentivirus vector transgene in pigs and chickens. Promoted as a ‘universal’ enhancer/promoter element capable of transcriptional activity in a number of cells in vitro, CMV–GFP transgene expression in vivo is preferentially observed in exocrine cells. This expression profile validates the use of this transcriptional control sequence to target expression to exocrine cells in gene transfer strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Assogba BD, Choi BH, Rho HM (2002) Transcriptional activation of the promoter of human cytomegalovirus immediate early gene (CMV-IE) by the hepatitis B viral X protein (HBx) through the NF-kappaB site. Virus Res 84:171–179. doi:10.1016/S0168-1702(01)00445-2

    Article  PubMed  CAS  Google Scholar 

  • Benedict CA, Angulo A, Patterson G, Ha S, Huang H, Messerle M, Ware CF, Ghazal P (2004) Neutrality of the canonical NF-kappaB-dependent pathway for human and murine cytomegalovirus transcription and replication in vitro. J Virol 78:741–750. doi:10.1128/JVI.78.2.741-750.2004

    Article  PubMed  CAS  Google Scholar 

  • Boshart M, Weber F, Jahn G, Dorsch-Hasler K, Fleckenstein B, Schaffner W (1985) A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41:521–530. doi:10.1016/S0092-8674(85)80025-8

    Article  PubMed  CAS  Google Scholar 

  • Brandtzaeg P, Farstad IN, Johansen FE, Morton HC, Norderhaug IN, Yamanaka T (1999) The B-cell system of human mucosae and exocrine glands. Immunol Rev 171:45–87. doi:10.1111/j.1600-065X.1999.tb01342.x

    Article  PubMed  CAS  Google Scholar 

  • Foecking MK, Hofstetter H (1986) Powerful and versatile enhancer-promoter unit for mammalian expression vectors. Gene 45:101–105. doi:10.1016/0378-1119(86)90137-X

    Article  PubMed  CAS  Google Scholar 

  • Fraldi A, Zito E, Annunziata F, Lombardi A, Cozzolino M, Monti M, Spampanato C, Ballabio A, Pucci P, Sitia R, Cosma MP (2008) Multistep, sequential control of the trafficking and function of the multiple sulfatase deficiency gene product, SUMF1 by PDI, ERGIC-53 and ERp44. Hum Mol Genet 17:2610–2621. doi:10.1093/hmg/ddn161

    Article  PubMed  CAS  Google Scholar 

  • Furth PA, Hennighausen L, Baker C, Beatty B, Woychick R (1991) The variability in activity of the universally expressed human cytomegalovirus immediate early gene 1 enhancer/promoter in transgenic mice. Nucleic Acids Res 19:6205–6208. doi:10.1093/nar/19.22.6205

    Article  PubMed  CAS  Google Scholar 

  • Gruh I, Wunderlich S, Winkler M, Schwanke K, Heinke J, Blomer U, Ruhparwar A, Rohde B, Li RK, Haverich A, Martin U (2008) Human CMV immediate-early enhancer: a useful tool to enhance cell-type-specific expression from lentiviral vectors. J Gene Med 10:21–32. doi:10.1002/jgm.1122

    Article  PubMed  CAS  Google Scholar 

  • Gustems M, Borst E, Benedict CA, Perez C, Messerle M, Ghazal P, Angulo A (2006) Regulation of the transcription and replication cycle of human cytomegalovirus is insensitive to genetic elimination of the cognate NF-kappaB binding sites in the enhancer. J Virol 80:9899–9904. doi:10.1128/JVI.00640-06

    Article  PubMed  CAS  Google Scholar 

  • Kong J, Kim SR, Binley K, Pata I, Doi K, Mannik J, Zernant-Rajang J, Kan O, Iqball S, Naylor S, Sparrow JR, Gouras P, Allikmets R (2008) Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy. Gene Ther 15:1311–1320. doi:10.1038/gt.2008.78

    Article  PubMed  CAS  Google Scholar 

  • McGrew MJ, Sherman A, Ellard FM, Lillico SG, Gilhooley HJ, Kingsman AJ, Mitrophanous KA, Sang H (2004) Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Rep 5:728–733. doi:10.1038/sj.embor.7400171

    Article  PubMed  CAS  Google Scholar 

  • Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267. doi:10.1126/science.272.5259.263

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer A (2004) Lentiviral transgenesis. Transgenic Res 13:513–522. doi:10.1007/s11248-004-2735-5

    Article  PubMed  CAS  Google Scholar 

  • Prols F, Ehehalt F, Rodriguez-Niedenfuhr M, He L, Huang R, Christ B (2004) The role of Emx2 during scapula formation. Dev Biol 275:315–324. doi:10.1016/j.ydbio.2004.08.003

    Article  PubMed  CAS  Google Scholar 

  • Ramezani A, Hawley TS, Hawley RG (2000) Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Mol Ther 2:458–469. doi:10.1006/mthe.2000.0190

    Article  PubMed  CAS  Google Scholar 

  • Sambucetti LC, Cherrington JM, Wilkinson GW, Mocarski ES (1989) NF-kappa B activation of the cytomegalovirus enhancer is mediated by a viral transactivator and by T cell stimulation. EMBO J 8:4251–4258

    PubMed  CAS  Google Scholar 

  • Schmidt EV, Christoph G, Zeller R, Leder P (1990) The cytomegalovirus enhancer: a pan-active control element in transgenic mice. Mol Cell Biol 10:4406–4411

    PubMed  CAS  Google Scholar 

  • Tessitore A, Faella A, O’Malley T, Cotugno G, Doria M, Kunieda T, Matarese G, Haskins M, Auricchio A (2008) Biochemical, pathological, and skeletal improvement of mucopolysaccharidosis VI after gene transfer to liver but not to muscle. Mol Ther 16:30–37. doi:10.1038/sj.mt.6300325

    Article  PubMed  CAS  Google Scholar 

  • Whitelaw CB, Radcliffe PA, Ritchie WA, Carlisle A, Ellard FM, Pena RN, Rowe J, Clark AJ, King TJ, Mitrophanous KA (2004) Efficient generation of transgenic pigs using equine infectious anaemia virus (EIAV) derived vector. FEBS Lett 571:233–236. doi:10.1016/j.febslet.2004.06.076

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455:627–632. doi:10.1038/nature07314

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the animal staff for their care of the animals and Bob Fleming for his assistance with microscopy. This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK and the European Commission NEST029025 project INTEGRA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Vasey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasey, D.B., Lillico, S.G., Sang, H.M. et al. CMV enhancer–promoter is preferentially active in exocrine cells in vivo. Transgenic Res 18, 309–314 (2009). https://doi.org/10.1007/s11248-008-9235-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-008-9235-y

Keywords

Navigation