Skip to main content

Advertisement

Log in

Expression of rabies virus G protein in carrots (Daucus carota)

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Antigens derived from various pathogens can readily be synthesized at high levels in plants in their authentic forms. Such antigens administered orally can induce an immune response and, in some cases, result in protection against a subsequent challenge. We here report the expression of rabies virus G protein into carrots. The G gene was subcloned into the pUCpSSrabG vector and then used to transform carrot embryogenic cells by particle bombardment. The carrot cells were selected in liquid medium, a method previously unreported. The presence of the transgene was verified by PCR, and by RT-PCR. By western blot, G protein transgene was identified in 93.3% of adult carrot roots. The G protein was quantified by densitometric analysis (range 0.4–1.2%). The expressed protein was antigenic in mice. This confirms that the carrot is an adequate system for antigen expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Graph 1

Similar content being viewed by others

References

  • Arntzen C (2005) Plant-derived vaccines and antibodies: potential and limitations. Vaccine 23:1753–1756. doi:10.1016/j.vaccine.2005.01.090

    Article  CAS  PubMed  Google Scholar 

  • Ashraf S, Singh PK, Yada DK, Shahnawaz M, Mishra S, Sawant SV, Tuli R (2005) High level expression of surface glycoprotein of rabies virus in tobacco leaves and its immunoprotective activity in mice. J Biotechnol 119:1–14. doi:10.1016/j.jbiotec.2005.06.009

    Article  CAS  PubMed  Google Scholar 

  • Astoul E, Lafage M, Lafon M (1996) Rabies superantigen as a Vbeta T-dependent adjuvant. J Exp Med 183:1623–1631. doi:10.1084/jem.183.4.1623

    Article  CAS  PubMed  Google Scholar 

  • Becker D, Kemper E, Schell J, Masterson R (1992) New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol 20:1195–1197. doi:10.1007/BF00028908

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Breitler JC, Labeyrice A, Meynard D, Legavre T (2002) Efficient microproyectile bombardment-mediated transformation of rice using gene cassettes. Theor Appl Genet 104:709–719. doi:10.1007/s00122-001-0786-z

    Article  CAS  PubMed  Google Scholar 

  • Chambers AP, Duggan SP, Heritae J, Forbes MJ (2002) The fate of antibiotic resistance marker genes in transgenic plant feed material fed to chickens. J Antimicrob Chemother 49:161–164. doi:10.1093/jac/49.1.161

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Marmey PH, Taylor NJ, Brizard JP, Espinoza C, D’Cruz P, Huet H, Zhang S, Kochko A, Beachy R, Fauquet CM (1998) Expression and inherence of multiple transgenes in rice plants. Nat Biotech 16:1060–1064. doi:10.1038/3511

    Article  CAS  Google Scholar 

  • Cliquet F, Sagné L, Schereffer JL, Aubert MFA (2000) ELISA test for rabies antibody titration in orally vaccinated foxes sampled in the fields. Vaccine 18:3272–3279. doi:10.1016/S0264-410X(00)00127-4

    Article  CAS  PubMed  Google Scholar 

  • Cuevas RS, Weimersheimer RJ, de Paz VO, Hernández BE, Batalla CD (1996) Utilización del virus rábico de origen vampiro “CASS-88” como cepa de desafío en ovinos. Vet Mex 27:339342

    Google Scholar 

  • Dean DJ, Abelseth MK, Atanasiu W (1996) The fluorescent antibody test. In: Meslin FX, Kaplan MM, Koprowski H (eds) Laboratory techniques in rabies, 4th edn. WHO, Geneva

    Google Scholar 

  • Delagneau JF, Perrin P, Atanasiu P (1981) Structure of the rabies virus: spatial relationships of the proteins G, M1, M2 and N. Ann Inst Pasteur Virol 132:473–493. doi:10.1016/S0769-2617(81)80036-6

    Article  Google Scholar 

  • Dhankhar P, Vaidya SA, Fishbein DB, Meltzer MI (2008) Costs effectiveness of rabies post exposure prophylaxis in the United States. Vaccine 26:4251–4255. doi:10.1016/j.vaccine.2008.05.048

    Article  PubMed  Google Scholar 

  • Dietzschold B, Wang HH, Rupprecht CE, Celis E, Tollis M, Ertl H, Heber-Katz E, Koprowski H (1987) Induction of protective immunity against rabies by immunization with rabies virus ribonucleoprotein. Proc Natl Acad Sci USA 84:9165–9169. doi:10.1073/pnas.84.24.9165

    Article  CAS  PubMed  Google Scholar 

  • Drings A (1998) Towards a vaccine against the European Lyssaviruses a structural and immunological approach. Freien Universität Berlin, Berlin

    Google Scholar 

  • Drings A, Jallet C, Chambert B, Tordo N, Perrin P (1999) Is there an advantage to including the nucleoprotein in a rabies glycoprotein subunit vaccine? Vaccine 17:1549–1557. doi:10.1016/S0264-410X(98)00357-0

    Article  CAS  PubMed  Google Scholar 

  • Faye L, Boulaflous A, Benchabane M, Gomord V, Michaud D (2005) Protein modifications in the plant secretory pathway: current status and practical implications in molecular pharming. Vaccine 23:1770–1778. doi:10.1016/j.vaccine.2004.11.003

    Article  CAS  PubMed  Google Scholar 

  • Freuling C, Selhorst T, Bätza HJ, Müller T (2008) The financial challenge of keeping a large region rabies-free- the EU example. Dev Biol (Basel) 131:273–282

    CAS  Google Scholar 

  • Fries LF, Tartaglia J, Taylor J, Kauffman EK, Meignier B, Paoletti E, Plotkin S (1996) Human safety and immunogenicity of a canarypox-rabies glycoprotein recombinant vaccine: an alternative poxvirus vector system. Vaccine 14:428–434. doi:10.1016/0264-410X(95)00171-V

    Article  CAS  PubMed  Google Scholar 

  • Fu ZF, Dietzschold B, Schumacher CL, Wunner WH, Ertl HC, Koprowski H (1991) Rabies virus nucleoprotein expressed and purified from insect cells is efficacious as a vaccine. Proc Natl Acad Sci USA 88:2001–2005. doi:10.1073/pnas.88.5.2001

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Duc TL, Fontana S, Bong BB, Tinjuanjun P, Sudhakar D, Twyman MR, Chistou P, Kohli A (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Trans Res 9:11–19. doi:10.1023/A:1008993730505

    Article  CAS  Google Scholar 

  • Hendekli CM (2005) Current therapies in rabies. Arch Virol 150:1047–1056. doi:10.1007/s00705-005-0493-1

    Article  CAS  PubMed  Google Scholar 

  • Jin-Tao L, Lei F, Zhi-Rong M, Jing W, Yan T, Hai-Yang H, Li W, Yu-Zhang W (2006) Immunogenicity of a plant-derived edible rotavirus subunit vaccine transformed over fifty generations. Virology 356:171–178. doi:10.1016/j.virol.2006.07.045

    Article  Google Scholar 

  • Kong Q, Richter L, Yang YF, Arntzen CJ, Mason HS, Thanavala J (2001) Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proc Natl Acad Sci USA 98:11539–11544. doi:10.1073/pnas.191617598

    Article  CAS  PubMed  Google Scholar 

  • Koprowski H (2005) Vaccines and sera through plant biotechnology. Vaccine 23:1757–1763. doi:10.1016/j.vaccine.2004.11.001

    Article  CAS  PubMed  Google Scholar 

  • Lontai I (1996) The current state of rabies prevention in Europe. Vaccine 15(Suppl):S16–S19. doi:10.1016/S0264-410X(96)00313-1

    Google Scholar 

  • Marquet-Blouin E, Bouche FB, Steinmetz A, Muller CP (2003) Neutralizing immunogenicity of transgenic carrot (Daucus carota L.)—derived measles virus hemagglutinin. Plant Mol Biol 51:459–469. doi:10.1023/A:1022354322226

    Article  CAS  PubMed  Google Scholar 

  • Mason HS, Ball JM, Arzen CJ (1992) Expression of hepatitis B surface antigen transgenic plants. Proc Natl Acad Sci USA 93:11745–11749. doi:10.1073/pnas.89.24.11745

    Article  Google Scholar 

  • Mason HS, Ball JM, Shi JJ, Jiang X, Estes MK, Arntzen CJ (1996) Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc Natl Acad Sci USA 93:5335–5340. doi:10.1073/pnas.93.11.5335

    Article  CAS  PubMed  Google Scholar 

  • McGarvey PB, Hammond J, Dienelt MM, Hooper CD, Fu FZ, Dietzschold B, Koprowski H, Michaels HF (1995) Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnology 13:1484–1487. doi:10.1038/nbt1295-1484

    Article  CAS  PubMed  Google Scholar 

  • Modelska A, Dietzschold B, Sleysh N, Fu FZ, Steplewski K, Hooper CD, Koprowski H, Yusibov V (1998) Immunization against rabies with plant-derived antigen. Proc Natl Acad Sci USA 95:2481–2485. doi:10.1073/pnas.95.5.2481

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Orciari AL, Niezgoda M, Hanlon C, Shaddock HJ, Sanderlin WD, Yager AP, Rupprecht EC (2001) Rapid clearance of SAG-2 rabies virus from dogs alters oral vaccination. Vaccine 19:4511–4518. doi:10.1016/S0264-410X(01)00186-4

    Article  CAS  PubMed  Google Scholar 

  • Paolazzi CC, Pérez O, De Filipo J (1999) Rabies vaccine. Mol Biol 11:137–147

    CAS  Google Scholar 

  • Perea-Arango I, Loza-Rubio E, Roja-Anaya E, Olivera-Flores T, González de la Vara L, Gómez-Lim MA (2008) Expression of the rabies virus nucleoprotein in plants at high-levels and evaluation of immune response in mice. Plant Cell Rep 27:677–685. doi:10.1007/s00299-007-0324-9

    Article  CAS  PubMed  Google Scholar 

  • Perrin P, Thibodeau L, Sureau P (1985) Rabies immunosomes (subunit vaccine structure and immunogenicity). Pre- and post-exposure protection studies. Vaccine 3:325–332. doi:10.1016/S0264-410X(85)90224-5

    Article  CAS  PubMed  Google Scholar 

  • Quiambao PB, Dimaano ME, Ambas C, Davis R, Banshoff A, Malerczik C (2005) Reducing the cost of post-exposure rabies prophylaxis: efficacy of 0.1 ml PCEC rabies vaccine administered intradermally using the Thai Red Cross post-exposure regimen in patients severely exposed to laboratory-confirmed rabid animals. Vaccine 23:1709–1714. doi:10.1016/j.vaccine.2004.09.027

    Article  CAS  PubMed  Google Scholar 

  • Rigano MM, Walmsley MA (2005) Expression systems and developments in plant-made vaccines. Immunol Cell Biol 83:271–277. doi:10.1111/j.1440-1711.2005.01336.x

    Article  CAS  PubMed  Google Scholar 

  • Rosales-Mendoza S, Soria-Guerra RE, Olivera-Flores MTJ, López-Revilla R, Argüello-Astorga GR, Jiménez-Bermont JF, de la Cruz-García RF, Loyola-Rodriguez JP, Alpuche-Solís AG (2007) Expression of Escherichia coli heat-labile enterotoxin B subunit (LTB) in carrots (Daucus carota L.) protects mice against cholera toxin challenge. Plant Cell Rep 26:969–976. doi:10.1007/s00299-007-0310-2

    Article  CAS  PubMed  Google Scholar 

  • Rosales-Mendoza S, Soria-Guerra RE, López-Revilla R, Moreno-Fierros L, Alpuche-Solís AG (2008) Ingestion of transgenic carrots expressing the Escherichia coli heat-labile enterotoxin B subunit protects mice against cholera toxin challenge. Plant Cell Rep 27:79–84. doi:10.1007/s00299-007-0439-z

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Streatfield SJ (2005) Plant-based vaccines for animal health. Rev Sci Tech 24:189–199

    CAS  PubMed  Google Scholar 

  • Streatfield SJ (2006) Mucosal immunization using recombinant plant-based oral vaccines. Methods 38:150–157. doi:10.1016/j.ymeth.2005.09.013

    Article  CAS  PubMed  Google Scholar 

  • Streatfield SJ, Lane RJ, Brooks AC, Barker KD, Poage LM (2003) Corn as a production system for human and animal vaccines. Vaccine 21:812–815. doi:10.1016/S0264-410X(02)00605-9

    Article  CAS  PubMed  Google Scholar 

  • Tacket CO, Mason HS, Losonsky G, Estes MK, Levine MM, Arntzen CJ (2000) Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. J Infect Dis 182:302–305. doi:10.1086/315653

    Article  CAS  PubMed  Google Scholar 

  • Tae-Jin K, Nguyen-Hoang L, Mi-Ok J, Yong-Suk J, Young-Sook K, Jo-Eun S, Moon-Sik Y (2003) Expression of the B subunit of E. coli heat-labile enterotoxin in the chloroplasts of plants and its characterization. Trans Res 12:682–691

    Google Scholar 

  • Wang Y, Xiang Z, Pasquini S, Erlt HC (1997) The use an E1-deleted, replication defective adenovirus recombinant expressing the rabies virus glycoprotein for early vaccination of mice against rabies virus. J Vilol 71:3677–3683

    CAS  Google Scholar 

  • Yusibov V, Modelska A, Steplewski K, Agadjanyan M, Weiner D, Hooper DC, Koprowski H (1997) Antigens produced in plants by infection with chimeric plant viruses immunize against rabies virus and HIV-1. Proc Natl Acad Sci USA 94:5784–5788. doi:10.1073/pnas.94.11.5784

    Article  CAS  PubMed  Google Scholar 

  • Yusibov V, Hooper DC, Spitsin SV, Fleysh N, Kean RB, Mikheeva T, Deka D, Karasev A, Cox S, Randall J, Koprowski H (2002) Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine 20:3155–3164. doi:10.1016/S0264-410X(02)00260-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate comments by Dr. George M. Baer and the technical assistance of Luis Jorge Saucedo-Arias and Maria de Jesús Jiménez Villalobos. This research was supported by a CONACyT grant (G34635B) to E.L.R and a scholarship to E.R.A. (no.17885). We also thank to Dr. Susan Nadin-Davis (ADRI, Canada), for donating the G protein cDNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Loza-Rubio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojas-Anaya, E., Loza-Rubio, E., Olivera-Flores, M.T. et al. Expression of rabies virus G protein in carrots (Daucus carota). Transgenic Res 18, 911–919 (2009). https://doi.org/10.1007/s11248-009-9278-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-009-9278-8

Keywords

Navigation