Skip to main content
Log in

Production of taxa-4(5),11(12)-diene by transgenic Physcomitrella patens

  • Brief Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Taxadiene synthase gene from Taxus brevifolia was constitutively expressed in the moss Physcomitrella patens using a ubiquitin promoter to produce taxa-4(5),11(12)-diene, the precursor of the anticancer drug paclitaxel. In stable moss transformants, taxa-4(5),11(12)-diene was produced up to 0.05% fresh weight of tissue, without significantly affecting the amounts of the endogenous diterpenoids (ent-kaurene and 16-hydroxykaurane). Unlike higher plants that had been genetically modified to produce taxa-4(5),11(12)-diene, transgenic P. patens did not exhibit growth inhibition due to alteration of diterpenoid metabolic pools. Thus we propose that P. patens is a promising alternative host for the biotechnological production of paclitaxel and its precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Besumbes O, Sauret-Gueeto S, Phillips MA, Imperial S, Rodriguez-Concepcion M, Boronat A (2004) Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of taxol. Biotechnol Bioeng 88:168–175. doi:10.1002/bit.20237

    Article  PubMed  CAS  Google Scholar 

  • Cassells AC, Curry RF (2001) Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tissue Organ Cult 64:145–157. doi:10.1023/A:1010692104861

    Article  CAS  Google Scholar 

  • Chauviere G, Guenard D, Picot F, Senilh V, Potier P (1981) Structural analysis and biochemical study of isolated products of the yew: Taxus baccata L. (Taxaceae). C R Seances Acad Sci, Ser 2 293:501–503

    CAS  Google Scholar 

  • Chi Y, Ping W, Li S, Zhu J, Ma X, Gao F, Zhou D (2008) T-DNA transfer and integration as a tool for insertional mutagenesis in the taxol-producing fungus. High Technol Lett 14(1):92–97

    CAS  Google Scholar 

  • Decker EL, Reski R (2008) Current achievements in the production of complex biopharmaceuticals with moss bioreactors. Bioprocess Biosyst Eng 31:3–9. doi:10.1007/s00449-007-0151-y

    Article  PubMed  CAS  Google Scholar 

  • DeJong JHM, Liu Y, Bollon AP, Long RM, Jennewein S, Williams D, Croteau RB (2006) Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng 93:212–224. doi:10.1002/bit.20694

    Article  PubMed  CAS  Google Scholar 

  • ElSohly HN, Croon EM Jr, Kopycki WJ, Joshi AS, McChesney JD (1997) Diurnal and seasonal effects on the taxane content of the clippings of certain Taxus cultivars. Phytochem Anal 8:124–129. doi:10.1002/(SICI)1099-1565(199705)8:3<124::AID-PCA342>3.0.CO;2-1

    Article  CAS  Google Scholar 

  • Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab Eng 10:201–206. doi:10.1016/j.ymben.2008.03.001

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Kawaide H, Notomi M, Sakigi Y, Matsuo A, Nozaki H (2006) Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens. FEBS Lett 580:6175–6181. doi:10.1016/j.febslet.2006.10.018

    Article  PubMed  CAS  Google Scholar 

  • Hefner J, Rubenstein SM, Ketchum REB, Gibson DM, Williams RM, Croteau R (1996) Cytochrome P450-catalyzed hydroxylation of taxa-4(5), 11(12)-diene to taxa-4(20), 11(12)-dien-5α-ol: the first oxygenation step in taxol biosynthesis. Chem Biol 3:479–489. doi:10.1016/S1074-5521(96)90096-4

    Article  PubMed  CAS  Google Scholar 

  • Hezari M, Ketchum REB, Gibson DM, Croteau R (1997) Taxol production and taxadiene synthase activity in Taxus canadensis cell suspension cultures. Arch Biochem Biophys 337:185–190. doi:10.1006/abbi.1996.9772

    Article  PubMed  CAS  Google Scholar 

  • Hirano K, Nakajima M, Asano K, Nishiyama T, Sakakibara H, Kojima M, Katoh E, Xiang H, Tanahashi T, Hasebe M, Banks JA, Ashikari M, Kitano H, Ueguchi-Tanaka M, Matsuoka M (2007) The GID1-mediated gibberellin perception mechanism is conserved in the lycophyte Selaginella moellendorffii but not in the bryophyte Physcomitrella patens. Plant Cell 19:3058–3079. doi:10.1105/tpc.107.051524

    Article  PubMed  CAS  Google Scholar 

  • Holton RA, Biediger RJ, Boatman D (1995) Semisynthesis of taxol and taxotere. In: Suffness M (ed) Taxol science and applications. CRC Press, Boca Raton, pp 97–121

    Google Scholar 

  • Hook I, Poupat C, Ahond A, Guenard D, Gueritte F, Adeline M-T, Wang X-P, Dempsey D, Breuillet S, Potier P (1999) Seasonal variation of neutral and basic taxoid contents in shoots of European yew (Taxus baccata). Phytochemistry 52:1041–1045. doi:10.1016/S0031-9422(99)00264-2

    Article  CAS  Google Scholar 

  • Huang Q, Roessner CA, Croteau R, Scott AI (2001) Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg Med Chem 9:2237–2242. doi:10.1016/S0968-0896(01)00072-4

    Article  PubMed  CAS  Google Scholar 

  • Jennewein S, Rithner CD, Williams RM, Croteau RB (2001) Taxol biosynthesis: taxane 13α-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci USA 98:13595–13600. doi:10.1073/pnas.251539398

    Article  PubMed  CAS  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188. doi:10.1023/A:1006423110134

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi Y, Yatagai M (2003) The commercial cultivation of Taxus species and production of taxoids. Med Aromat Plants-Ind. Profiles 32:151–178

    CAS  Google Scholar 

  • Kingston DGI, Jagtap PG, Yuan H, Samala L (2002) The chemistry of taxol and related taxoids. Prog Chem Org Nat Prod 84:53–225

    CAS  Google Scholar 

  • Kovacs K, Zhang L, Linforth RST, Whittaker B, Hayes CJ, Fray RG (2007) Redirection of carotenoid metabolism for the efficient production of taxadiene [taxa-4(5), 11(12)-diene] in transgenic tomato fruit. Transgenic Res 16:121–126. doi:10.1007/s11248-006-9039-x

    Article  PubMed  CAS  Google Scholar 

  • Li J-Y, Sidhu RS, Bollon A, Strobel GA (1998) Stimulation of taxol production in liquid cultures of Pestalotiopsis microspora. Mycol Res 102:461–464. doi:10.1017/S0953756297005078

    Article  CAS  Google Scholar 

  • Perroud P-F, Quatrano RS (2006) The role of ARPC4 in tip growth and alignment of the polar axis in filaments of Physcomitrella patens. Cell Motil Cytoskeleton 63:162–171. doi:10.1002/cm.20114

    Article  PubMed  CAS  Google Scholar 

  • Ralston L, Yu O (2006) Metabolons involving cytochrome P450s. Phytochem Rev 5:459–472. doi:10.1007/s11101-006-9014-4

    Article  CAS  Google Scholar 

  • Rontein D, Onillon S, Herbette G, Lesot A, Werck-Reichhart D, Sallaud C, Tissier A (2008) CYP725A4 from yew catalyzes complex structural rearrangement of taxa-4(5), 11(12)-diene into the cyclic ether 5(12)-oxa-3(11)-cyclotaxane. J Biol Chem 283:6067–6075. doi:10.1074/jbc.M708950200

    Article  PubMed  CAS  Google Scholar 

  • Schaefer DG, Zryd J-P (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206. doi:10.1046/j.1365-313X.1997.11061195.x

    Article  PubMed  CAS  Google Scholar 

  • Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667. doi:10.1038/277665a0

    Article  PubMed  CAS  Google Scholar 

  • Schoendorf A, Rithner CD, Williams RM, Croteau RB (2001) Molecular cloning of a cytochrome P450 taxane 10β-hydroxylase cDNA from Taxus and functional expression in yeast. Proc Natl Acad Sci USA 98:1501–1506. doi:10.1073/pnas.98.4.1501

    Article  PubMed  CAS  Google Scholar 

  • Smith RF, Cameron SI (2002) Domesticating ground hemlock (Taxus canadensis) for producing taxanes: a case study. Proc—Plant Growth Regul Soc Am 29:40–45

    Google Scholar 

  • Stierle A, Stierle D, Strobel G, Bignami G, Grothaus P (1994) Endophytic fungi of Pacific yew (Taxus brevifolia) as a source of taxol, taxanes, and other pharmacophores. ACS Symp Ser 557:64–77

    Article  CAS  Google Scholar 

  • Suffness M, Wall ME (1995) Discovery and development of taxol. In: Suffness M (ed) Taxol science and applications. CRC Press, Boca Raton, pp 3–25

    Google Scholar 

  • Tabata H (2006) Production of paclitaxel and the related taxanes by cell suspension cultures of Taxus species. Curr Drug Targets 7:453–461. doi:10.2174/138945006776359368

    Article  PubMed  CAS  Google Scholar 

  • Thomas PA, Polwart A (2003) Taxus baccata L. J Ecol 91:489–524. doi:10.1046/j.1365-2745.2003.00783.x

    Article  Google Scholar 

  • Vandenbussche F, Fierro AC, Wiedemann G, Reski R, van der Straeten D (2007) Evolutionary conservation of plant gibberellin signalling pathway components. BMC Plant Biol. doi:10.1186/1471-2229-7-65

    PubMed  Google Scholar 

  • Vidensek N, Lim P, Campbell A, Carlson C (1990) Taxol content in bark, wood, root, leaf, twig, and seedling from several Taxus species. J Nat Prod 53:1609–1610. doi:10.1021/np50072a039

    Article  PubMed  CAS  Google Scholar 

  • von Schwartzenberg K, Schultze W, Kassner H (2004) The moss Physcomitrella patens releases a tetracyclic diterpene. Plant Cell Rep 22:780–786. doi:10.1007/s00299-004-0754-6

    Article  CAS  Google Scholar 

  • Walker K, Schoendorf A, Croteau R (2000) Molecular cloning of a taxa-4(20),11(12)-dien-5α-ol-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Arch Biochem Biophys 374:371–380. doi:10.1006/abbi.1999.1609

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Guo B, Miao Z, Tang K (2007) Transformation of taxol-producing endophytic fungi by restriction enzyme-mediated integration (REMI). FEMS Microbiol Lett 273(2):253–259. doi:10.1111/j.1574-6968.2007.00801.x

    Article  PubMed  CAS  Google Scholar 

  • Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327. doi:10.1021/ja00738a045

    Article  PubMed  CAS  Google Scholar 

  • Wheeler NC, Jech K, Masters S, Brobst SW, Alvarado AB, Hoover AJ, Snader KM (1992) Effects of genetic, epigenetic, and environmental factors on taxol content in Taxus brevifolia and related species. J Nat Prod 55:432–440. doi:10.1021/np50082a005

    Article  PubMed  CAS  Google Scholar 

  • Wildung MR, Croteau R (1996) A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J Biol Chem 271:9201–9204. doi:10.1074/jbc.271.38.23262

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Chappell J (2008) Metabolic engineering of natural products in plants; tools of the trade and challenges for the future. Curr Opin Biotechnol 19:145–152. doi:10.1016/j.copbio.2008.02.007

    Article  PubMed  CAS  Google Scholar 

  • Yasumura Y, Crumpton-Taylor M, Fuentes S, Harberd NP (2007) Step-by-step acquisition of the gibberellin-DELLA growth-regulatory mechanism during land-plant evolution. Curr Biol 17:1225–1230. doi:10.1016/j.cub.2007.06.037

    Article  PubMed  CAS  Google Scholar 

  • Zhao C-F, Yu L-J, Liu Z, Sun Y-P (2006) The dynamic variation of several important taxane content in post-harvest Taxus chinensis clippings. J Asian Nat Prod Res 8:229–239. doi:10.1080/1028602042000324934

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Ping W, Zhang L, Liu J, Lin Y, Jin T, Zhou D (2008) Screening and breeding of high taxol producing fungi by genome shuffling. Sci China, Ser. C Life Sci 51(3):222–231. doi:10.1007/s11427-008-0037-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Rodney Croteau (Washington State University) for the taxadiene synthase gene and antibody used in this study, as well as Dr. Robert Coates (University of Illinois) for ent-kaurene and 16-hydroxykaurane standards. This work is supported by the Southern Illinois University SEED Grant (to A.A.) and Southern Illinois University REACH Award (to E.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldwin Anterola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anterola, A., Shanle, E., Perroud, PF. et al. Production of taxa-4(5),11(12)-diene by transgenic Physcomitrella patens . Transgenic Res 18, 655–660 (2009). https://doi.org/10.1007/s11248-009-9252-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-009-9252-5

Keywords

Navigation