Skip to main content
Log in

Metabolons involving plant cytochrome P450s

  • Original Paper
  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Arranging biological processes into “compartments” is a key feature of all eukaryotic cells. Through this mechanism, cells can drastically increase metabolic efficiency and manage complex cellular processes more efficiently, saving space and energy. Compartmentation at the molecular level is mediated by metabolons. A metabolon is an ordered protein complex of sequential metabolic enzymes and associated cellular structural elements. The sub-cellular organization of enzymes involved in the synthesis and storage of plant natural products appears to involve the anchoring of metabolons by cytochrome P450 monooxygenases (P450s) to specific domains of the endoplasmic reticulum (ER) membrane. This review focuses on the current evidence supporting the organization of metabolons around P450s on the surface of the ER. We␣outline direct and indirect experimental data that describes P450 enzymes in the phenylpropanoid, flavonoid, cyanogenic glucoside, and other biosynthetic pathways. We also discuss the limitations and future directions of metabolon research and the potential for application to metabolic engineering endeavors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

4CL:

4-Coumarate: CoA ligase

AFM:

Atomic force microscopy

C4H:

Cinnamate 4-hydroxylase

CHI:

Chalcone isomerase

CHS:

Chalcone synthase

CPR:

NADPH-cytochrome P450 reductase

DFR:

Dihydroflavonol reductase

ER:

Endoplasmic reticulum

F3H:

Flavanone 3β-hydroxylase

F3′H:

Flavonoid 3′-hydroxylase

F3′5′H:

Flavonoid 3′,5′-hydroxylase

FLIM:

Fluorescence lifetime imaging microscopy

FRET:

Fluorescence energy resonance transfer

I2′H:

Isoflavone 2′-hydroxylase

IFS:

Isoflavone synthase

IOMT:

Isoflavone O-methyltransferase

P450:

Cytochrome P450 monooxygenase

PAL:

Phenylalanine ammonia-lyase

References

  • Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of l-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16:3098–3109

    Article  PubMed  CAS  Google Scholar 

  • Akashi T, Sawada Y, Aoki T, Ayabe S (2000) New scheme of the biosynthesis of formononetin involving 2,7,4′-trihydroxyisoflavanone but not daidzein as the methyl acceptor. Biosci Biotechnol Biochem 64:2276–2279

    Article  PubMed  CAS  Google Scholar 

  • Akashi T, Sawada Y, Shimada N, Sakurai N, Aoki T, Ayabe S (2003) cDNA cloning and biochemical characterization of S-adenosyl-l-methionine: 2,7,4′-trihydroxyisoflavanone 4′-O-methyltransferase, a critical enzyme of the legume isoflavonoid phytoalexin pathway. Plant Cell Physiol 44:103–112

    Article  PubMed  CAS  Google Scholar 

  • Anderson KS, Kim AY, Quillen JM, Sayers E, Yang XJ, Miles EW (1995) Kinetic characterization of channel impaired mutants of tryptophan synthase. J Biol Chem 270:29,936–29,944

    CAS  Google Scholar 

  • Bak S, Olsen CE, Petersen BL, Moller BL, Halkier BA (1999) Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor. Plant J␣20:663–671

    Article  PubMed  CAS  Google Scholar 

  • Bayburt TH, Carlson JW, Sligar SG (1998) Reconstitution and imaging of a membrane protein in a nanometer-size phospholipid bilayer. J Struct Biol 123:37–44

    Article  PubMed  CAS  Google Scholar 

  • Bayburt TH, Sligar SG (2002) Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks. Proc Natl Acad Sci USA 99:6725–6730

    Article  PubMed  CAS  Google Scholar 

  • Blancaflor EB, Gilroy S (2000) Plant cell biology in the new millennium: new tools and new insights. Am J␣Bot 87:1547–1560

    Article  PubMed  CAS  Google Scholar 

  • Blount JW, Korth KL, Masoud SA, Rasmussen S, Lamb C, Dixon RA (2000) Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiol 122:107–116

    Article  PubMed  CAS  Google Scholar 

  • Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci 8:576–581

    Article  PubMed  CAS  Google Scholar 

  • Bridges A, Gruenke L, Chang YT, Vakser IA, Loew G, Waskell L (1998) Identification of the binding site on cytochrome P450 2B4 for cytochrome b5 and cytochrome P450 reductase. J Biol Chem 273:17,036–17,049

    Article  CAS  Google Scholar 

  • Burbulis IE, Winkel-Shirley B (1999) Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc Natl Acad Sci USA 96:12,929–12,934

    Article  CAS  Google Scholar 

  • Celenza JL (2001) Metabolism of tyrosine and tryptophan – new genes for old pathways. Curr Opin Plant Biol 4:234–240

    Article  PubMed  CAS  Google Scholar 

  • Chappell J (1995) Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Ann Rev Plant Physiol Mol Biol 46:521–547

    Google Scholar 

  • Chapple C (1998) Molecular genetics analysis of plant cytochrome P450-dependent monooxygenases. Ann Rev Plant Physiol Mol Biol 49:311–343

    Article  CAS  Google Scholar 

  • Chiu W, Baker ML, Jiang W, Dougherty M, Schmid MF (2005) Electron cryomicroscopy of biological machines at subnanometer resolution. Structure 13:363–372

    Article  PubMed  CAS  Google Scholar 

  • Chuong SD, Good AG, Taylor GJ, Freeman MC, Moorhead GB, Muench DG (2004) Large-scale identification of tubulin-binding proteins provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells. Mol Cell Proteomics 3:970–983

    Article  PubMed  CAS  Google Scholar 

  • Czichi U, Kindl H (1975) Formation of p-coumaric acid and o-coumaric acid from l-phenylalanine by microsomal membrane fractions from potato: evidence of membrane-bound enzyme complexes. Planta 125:115–125

    CAS  Google Scholar 

  • Czichi U, Kindl H (1977) Phenylalanine ammonia lyase and cinamic acid hydroxylases as assembled consecutive enzymes on microsomal membranes of cucumber cotyledons: cooperation and subcellular distribution. Planta 134:133–143

    Article  CAS  Google Scholar 

  • Davydov DR, Kariakin AA, Petushkova NA, Peterson JA (2000) Association of cytochromes P450 with their reductases: opposite sign of the electrostatic interactions in P450BM-3 as compared with the microsomal 2B4 system. Biochemistry 39:6489–6497

    Article  PubMed  CAS  Google Scholar 

  • Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Structure and chemistry of cytochrome P450. Chem Rev 105:2253–2277

    Article  PubMed  CAS  Google Scholar 

  • Dhillon DS, Brown SA (1976) Localization, purification, and characterization of dimethylallylpyrophosphate: umbelliferone dimethylallythransferase from Ruta graveolens. Arch Biochem Biophys 177:74–83

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu C-J, Reddy MSS, Wang LJ (2002) The phenylpropanoid pathway and plant defense – a genomics perspective. Mol Plant Pathol 3:371–390

    Article  CAS  Google Scholar 

  • Dixon RA, Chen F, Guo D, Parvathi K (2001) The biosynthesis of monolignols: a “metabolic grid”, or independent pathways to guaiacyl and syringyl units? Phytochemistry 57:1069–1084

    Article  PubMed  CAS  Google Scholar 

  • Estabrook RW, Hildebrandt AG, Baron J, Netter KJ, Leibman K (1971) A new spectral intermediate associated with cytochrome P-450 function in liver microsomes. Biochem Biophys Res Commun 42:132–139

    Article  PubMed  CAS  Google Scholar 

  • Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 6:775–784

    Article  PubMed  CAS  Google Scholar 

  • Galili G, Sengupta-Gopalan C, Ceriotti A (1998) The endoplasmic reticulum of plant cells and its role in protein maturation and biogenesis of oil bodies. Plant Mol Biol 38:1–29

    Article  PubMed  CAS  Google Scholar 

  • Graciet E, Lebreton S, Gontero B (2004) Emergence of new regulatory mechanisms in the Benson–Calvin pathway via protein–protein interactions: a glyceraldehyde-3-phosphate dehydrogenase/CP12/phosphoribulokinase complex. J Exp Bot 55:1245–1254

    Article  PubMed  CAS  Google Scholar 

  • Hrazdina G, Wagner GJ (1985) Metabolic pathways as enzyme complexes: evidence for the synthesis of phenylpropanoids and flavonoids on membrane associated enzyme complexes. Arch Biochem Biophys 237:88–100

    Article  PubMed  CAS  Google Scholar 

  • Hrazdina G, Zobel AM, Hoch HC (1987) Biochemical, immunological, and immunocytochemical evidence for the association of chalcone synthase with endoplasmic reticulum membranes. Proc Natl Acad Sci USA 84:8966–8970

    Article  PubMed  CAS  Google Scholar 

  • Hubbard PA, Shen AL, Paschke R, Kasper CB, Kim JJ (2001) NADPH-cytochrome P450 oxidoreductase: structural basis for hydride and electron transfer. J␣Biol Chem 276:29,163–29,170

    Article  CAS  Google Scholar 

  • Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5:224–229

    Article  PubMed  CAS  Google Scholar 

  • Ingelman-Sundberg M, Blanck J, Smettan G, Ruckpaul K (1983) Reduction of cytochrome P-450 LM2 by NADPH in reconstituted phospholipid vesicles is dependent on membrane charge. Eur J Biochem 134:157–162

    Article  PubMed  CAS  Google Scholar 

  • Ingelman-Sundberg M, Haaparanta T, Rydstrom J (1981) Membrane charge as effector of cytochrome P-450LM2 catalyzed reactions in reconstituted liposomes. Biochemistry 20:4100–4106

    Article  PubMed  CAS  Google Scholar 

  • Janovjak H, Kedrov A, Cisneros DA, Sapra KT, Struckmeier J, Muller DJ (2005) Imaging and detecting molecular interactions of single transmembrane proteins. Neurobiol Aging 88:1423–1428

    CAS  Google Scholar 

  • Jez JM, Bowman ME, Dixon RA, Noel JP (2000) Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat Struct Biol 7:786–791

    Article  PubMed  CAS  Google Scholar 

  • Jez JM, Bowman ME, Noel JP (2002) Role of hydrogen bonds in the reaction mechanism of chalcone isomerase. Biochemistry 41:5168–5176

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N, Zagrobelny M, Bak S, Moller BL (2005) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr Opin Plant Biol 8:280–291

    Article  PubMed  CAS  Google Scholar 

  • Kao YY, Harding SA, Tsai CJ (2002) Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen. Plant Physiol 130:756–760

    Article  Google Scholar 

  • Koopmann E, Hahlbrock K (1997) Differentially regulated NADPH: cytochrome p450 oxidoreductases in parsely. Proc Natl Acad Sci USA 94:14,954–14,959

    Article  CAS  Google Scholar 

  • Kristensen C, Morant M, Olsen CE, Ekstrom CT, Galbraith DW, Moller BL, Bak S (2005) Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc Natl Acad Sci USA 102:1779–1784

    Article  PubMed  CAS  Google Scholar 

  • Liu CJ, Blount JW, Steele CL, Dixon RA (2002) Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc Natl Acad Sci USA 99:14,578–14,583

    CAS  Google Scholar 

  • Liu CJ, Dixon RA (2001) Elicitor-induced association of isoflavone O-methyltransferase with endomembranes prevents the formation and 7-O-methylation of daidzein during isoflavonoid phytoalexin biosynthesis. Plant Cell 13:2643–2658

    Article  PubMed  CAS  Google Scholar 

  • Magee T, Pirinen N, Adler J, Pagakis SN, Parmryd I (2002) Lipid rafts: cell surface platforms for T cell signaling. Biol Res 35:127–131

    Article  PubMed  CAS  Google Scholar 

  • Memelink J (2004) Putting the opium in poppy to sleep. Nat Biotechnol 22:1526–1527

    Article  PubMed  CAS  Google Scholar 

  • Mendes P, Douglas KB, Welch GR (1995). Metabolic channelling in organized enzyme systems: experiments and models. In: Brindle KM (ed) Enzymology in vivo, vol 11. JAI Press Inc., Greenwich, CN, pp 1–19

    Google Scholar 

  • Miles EW (2001) Tryptophan synthase: a multienzyme complex with an intramolecular tunnel. Chem Rec 1:140–151

    Article  PubMed  CAS  Google Scholar 

  • Moller BL, Conn EE (1980) The biosynthesis of cyanogenic glucosides in higher plants. Channeling of intermediates in dhurrin biosynthesis by a microsomal system from Sorghum bicolor (linn) Moench. J Biol Chem 255:3049–3056

    PubMed  CAS  Google Scholar 

  • Morant M, Bak S, Moller BL, Werck-Reichhart D (2003) Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol 14:151–162

    Article  PubMed  CAS  Google Scholar 

  • Munro AW, Daff S, Coggins JR, Lindsay JG, Chapman SK (1996) Probing electron transfer in flavocytochrome P-450 BM3 and its component domains. Eur J Biochem 239:403–409

    Article  PubMed  CAS  Google Scholar 

  • Munro AW, Leys DG, McLean KJ, Marshall KR, Ost TW, Daff S, Miles CS, Chapman SK, Lysek DA, Moser CC, Page CC, Dutton PL (2002) P450 BM3: the very model of a modern flavocytochrome. Trends Biochem Sci 27:250–257

    Article  PubMed  CAS  Google Scholar 

  • Murataliev MB, Feyereisen R (2000) Functional interactions in cytochrome P450BM3. Evidence that NADP(H) binding controls redox potentials of the flavin cofactors. Biochemistry 39:12,699–12,707

    CAS  Google Scholar 

  • Murataliev MB, Feyereisen R, Walker FA (2004) Electron transfer by diflavin reductases. Biochim Biophys Acta 1698:1–26

    PubMed  CAS  Google Scholar 

  • Nadler SG, Strobel HW (1991) Identification and characterization of an NADPH-cytochrome P450 reductase derived peptide involved in binding to cytochrome P450. Arch Biochem Biophys 290:277–284

    Article  PubMed  CAS  Google Scholar 

  • Nielsen KA, Moller BL (2005) Cytochrome P450 in plants. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry. Kluwer Academic/Plenum Publishers, New York, pp 553–583

    Google Scholar 

  • Paine MJ, Scrutton NS, Munro AW, Gutierrez A, Roberts GC, Wolf CR (2005) Electron transfer partners of cytochrome P450. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry. Kluwer Academic/Plenum Publishers, New York, pp 115–148

    Google Scholar 

  • Panicot M, Minguet EG, Ferrando A, Alcazar R, Blazquez MA, Carbonell J, Altabella T, Koncz C, Tiburcio AF (2002) A polyamine metabolon involving aminopropyl transferase complexes in Arabidopsis. Plant Cell 14:2539–2551

    Article  PubMed  CAS  Google Scholar 

  • Peterson JA, Ebel RE, O’Keeffe DH, Matsubara T, Estabrook RW (1976) Temperature dependence of cytochrome P-450 reduction. A model for NADPH-cytochrome P-450 reductase: cytochrome P-450 interaction. J Biol Chem 251:4010–4016

    PubMed  CAS  Google Scholar 

  • Ralston L, Subramanian S, Matsuno M, Yu O (2005) Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean Type I and Type II chalcone isomerases. Plant Physiol 137: 1375–1388

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen S, Dixon RA (1999) Transgene-mediated and elicitor-induced perturbation of metabolic channeling at the entry point into the phenylpropanoid pathway. Plant Cell 11:1537–1552

    Article  PubMed  CAS  Google Scholar 

  • Reumann S (2000) The structural properties of plant peroxisomes and their metabolic significance. Biol Chem 381:639–648

    Article  PubMed  CAS  Google Scholar 

  • Ro DK, Douglas CJ (2004) Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast (Saccharomyces cerevisiae): implications for control of metabolic flux into the phenylpropanoid pathway. J␣Biol Chem 279:2600–2607

    Article  PubMed  CAS  Google Scholar 

  • Russell DW, Conn EE (1967) The cinnamic acid 4-hydroxylase of pea seedlings. Arch Biochem Biophys 122:256–258

    Article  PubMed  CAS  Google Scholar 

  • Saslowsky D, Winkel-Shirley B (2001) Localization of flavonoid enzymes in Arabidopsis roots. Plant J 27:37–48

    Article  PubMed  CAS  Google Scholar 

  • Saslowsky DE, Warek U, Winkel BS (2005) Nuclear localization of flavonoid enzymes in Arabidopsis. J␣Biol Chem 280:23,735–23,740

    Article  CAS  Google Scholar 

  • Schoch GA, Attias R, Le Ret M, Werck-Reichhart D (2003) Key substrate recognition residues in the active site of a plant cytochrome P450, CYP73A1. Homology guided site-directed mutagenesis. Eur J Biochem 270:3684–3695

    Article  PubMed  CAS  Google Scholar 

  • Sevrioukova IF, Li H, Zhang H, Peterson JA, Poulos TL (1999) Structure of a cytochrome P450-redox partner electron-transfer complex. Proc Natl Acad Sci USA 96:1863–1868

    Article  PubMed  CAS  Google Scholar 

  • Shen S, Strobel HW (1993) Role of lysine and arginine residues of cytochrome P450 in the interaction between cytochrome P4502B1 and NADPH-cytochrome P450 reductase. Arch Biochem Biophys 304:257–265

    Article  PubMed  CAS  Google Scholar 

  • Shen S, Strobel HW (1995) Functional assessment of specific amino acid residues of cytochrome P4501A1 using anti-peptide antibodies. Arch Biochem Biophys 320:162–169

    Article  PubMed  CAS  Google Scholar 

  • Shimada N, Aoki T, Sato S, Nakamura Y, Tabata S, Ayabe S (2003) A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus. Plant Physiol 131:941–951

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Tateishi T, Hatano M, Fujii-Kuriyama Y (1991) Probing the role of lysines and arginines in the catalytic function of cytochrome P450d by site-directed mutagenesis. Interaction with NADPH-cytochrome P450 reductase. J Biol Chem 266:3372–3375

    PubMed  CAS  Google Scholar 

  • Srere PA (1985) The metabolon. Trends Biochem Sci 10:109–110

    Article  Google Scholar 

  • Srere PA (1987) Complexes of sequential metabolic enzymes. Annu Rev Biochem 56:89–124

    Article  PubMed  CAS  Google Scholar 

  • Srere PA (2000) Macromolecular interactions: tracing the roots. Trends Biochem Sci 25:150–153

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam R, Desveaux D, Spickler C, Michnick SW, Brisson N (2001) Direct visualization of protein interactions in plant cells. Nat Biotechnol 19:769–772

    Article  PubMed  CAS  Google Scholar 

  • Thaminy S, Miller J, Stagljar I (2004) The split-ubiquitin membrane-based yeast two-hybrid system. Methods Mol Biol 261:297–312

    PubMed  CAS  Google Scholar 

  • Urban P, Mignotte C, Kazmaier M, Delorme F, Pompon D (1997) Cloning, yeast expression, and characterization of the coupling of two distantly related Arabidopsis thaliana NADPH-cytochrome P450 reductases with P450 CYP73A5. J Biol Chem 272:19,176–19,186

    Article  CAS  Google Scholar 

  • Venkateswarlu K, Lamb DC, Kelly DE, Manning NJ, Kelly SL (1998) The N-terminal membrane domain of yeast NADPH-cytochrome P450 (CYP) oxidoreductase is not required for catalytic activity in sterol biosynthesis or in reconstitution of CYP activity. J␣Biol Chem 273:4492–4496

    Article  PubMed  CAS  Google Scholar 

  • Wallrabe H, Periasamy A (2005) Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol 16:19–27

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Roberts DL, Paschke R, Shea TM, Masters BS, Kim JJ (1997) Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes. Proc Natl Acad Sci USA 94:8411–8416

    Article  PubMed  CAS  Google Scholar 

  • Wanner LA, Li G, Ware D, Somssich IE, Davis KR (1995) The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Mol Biol 27:327–338

    Article  PubMed  CAS  Google Scholar 

  • Weisshaar B, Jenkins GI (1998) Phenylpropanoid biosynthesis and its regulation. Curr Opin Plant Biol 1:251–257

    Article  PubMed  CAS  Google Scholar 

  • Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1:3003.1–3003.9

    Article  Google Scholar 

  • Winkel-Shirley B (2001a) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  CAS  Google Scholar 

  • Winkel-Shirley B (2001b) It takes a garden. How work on diverse plant species has contributed to an understanding of flavonoid metabolism. Plant Physiol 127:1399–1404

    Article  CAS  Google Scholar 

  • Winkel BSJ (2004) Metabolic channeling in plants. Ann Rev Plant Physiol Mol Biol 55:85–107

    CAS  Google Scholar 

  • Yu O, Jung W, Shi J, Croes RA, Fader GM, McGonigle B, Odell JT (2000) Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol 124:781–794

    Article  PubMed  CAS  Google Scholar 

  • Yu O, McGonigle B (2005) Metabolic engineering of isoflavone biosynthesis. Adv Agron 86:147–190

    Article  CAS  Google Scholar 

  • Yu O, Shi J, Hession AO, Maxwell CA, McGonigle B, Odell JT (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63:753–763

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Modi S, Smith G, Paine M, McDonagh PD, Wolf CR, Tew D, Lian LY, Roberts GC, Driessen HP (1999) Crystal structure of the FMN-binding domain of human cytochrome P450 reductase at 1.93 A resolution. Protein Sci 8:298–306

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Joe Jez of the Danforth Center for the critical review of this manuscript and for many thoughtful discussions on the topic. The research in Dr. Yu’s lab is supported by the National Science Foundation (MCB0519634), United States Department of Agriculture (CSREES: 2005-05190), and Missouri Soybean Merchandising Council (02-242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ralston, L., Yu, O. Metabolons involving plant cytochrome P450s. Phytochem Rev 5, 459–472 (2006). https://doi.org/10.1007/s11101-006-9014-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-006-9014-4

Keywords

Navigation