Skip to main content

Advertisement

Log in

Synthesis of Polyhedral Zirconia Nanoparticles for The Photocatalytic Degradation of Anionic Congo Red Dye Under Visible Light Irradiation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this study, mixed phase (tetragonal and monoclinic) Zirconia nanoparticles (ZrO2 NPs) namely, ZS3, ZS7 and ZS10 were synthesized via hydrothermal method at different pH values of (3, 7, 10) respectively. A combination of Powder X-ray diffraction (PXRD), High Resolution Transmission Electron Microscopy (HRTEM), and Selected Area Electron Diffraction (SAED) characterization techniques confirmed the formation of mixed phase ZrO2 nanoparticles. The photocatalytic behavior of synthesized ZrO2 NPs was examined for the degradation of anionic Congo Red (CR) Dye under visible light irradiation. A systematic study of the efficiency of the prepared ZS3, ZS7 and ZS10 nanoparticles was compared and it was found that ZS7 outperformed the ZS3 and ZS10 materials, having removal efficiency of up to 98.9% with 0.1 g of the prepared ZS7 nanoparticles for 75 ppm of Congo Red (CR) dye. Furthermore, the surface area analysis revealed that among the prepared materials, ZS7 exhibited the highest surface area, thereby corroborating the finding of its superior catalytic efficiency. Under the optimized experimental conditions, the degradation of dye followed first-order kinetics. ZS7 showed the highest removal efficiency in just 60 min of contact time for all the CR dye concentrations ranging from 50 to 100 ppm, making it a superior catalyst for the efficient removal of the targeted Congo Red dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

Data Availability

All the data generated or analysed during this study are included in this published article [and its supplementary information file].

References

  1. Li A, Kroeze C, Kahil T, Ma L, Strokal M (2019) Curr Opin Environ Sustain 40:88–94

    Article  Google Scholar 

  2. Fick J, Söderström H, Lindberg RH, Phan C, Tysklind M, Larsson DGJ (2009) Environ Toxicol Chem/SETAC 28:2522–2527

    Article  CAS  Google Scholar 

  3. Ortúzar M, Esterhuizen M, Olicón-Hernández DR, González-López J, Aranda E (2022) Front Microbiol 13:1–25

    Article  Google Scholar 

  4. Rajput K, Sareen S, Saini S, Kumar N, Sharma V, Mehta SK, Sharma MD (2022) Mater Today Proc 57:846–850

    Article  CAS  Google Scholar 

  5. Malik AQ, Mir TUG, Kumar D, Mir IA, Rashid A, Ayoub M, Shukla S (2023) Environ Sci Poll Res 1–28

  6. Maheshwari K, Agrawal M, Gupta AB (2021) Dye Poll Water Wastewater

  7. Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YAG, Elsamahy T, Jiao H, Fu Y, Sun J (2022) Ecotoxicol Environ Saf 231:113160

    Article  CAS  PubMed  Google Scholar 

  8. Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YAG, Elsamahy T, Jiao H, Fu Y, Sun J (2022) Ecotoxicol Environ Saf 231

  9. Muhammad Z, Ali F, Sajjad M, Ali N, Bilal M, Shaik MR, Adil SF, Sharaf MAF, Awwad EM, Khan M (2021) Catalysts 11:1–15

    Google Scholar 

  10. Bansal P, Chaudhary GR, Mehta SK (2015) Chem Eng J 280:475–485

    Article  CAS  Google Scholar 

  11. Bannunah AM. Molecules. https://doi.org/10.3390/molecules28145428

  12. Narasaiah BP, Koppala S, Kar P, Lokesh B, Mandal BK (2022) J Hazard Mater Adv 7:100112. https://doi.org/10.1016/j.hazadv.2022.100112

    Article  CAS  Google Scholar 

  13. Ghotekar SK, Pansambal S, Pagar T (2019) J Chem Rev 1:154–163

    Google Scholar 

  14. Bureau M (1952) Biotechnol Adv 1–33

  15. Tabassum N, Kumar D, Verma D, Bohara RA, Singh MP (2021) Mater Today Commun 26:102156. https://doi.org/10.1016/j.mtcomm.2021.102156

    Article  CAS  Google Scholar 

  16. Van Tran T, Nguyen DTC, Kumar PS, Din ATM, Jalil AA, Vo DVN (2022) Environ Chem Lett 20:1309–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reddy CV, Reddy IN, Harish VVN, Reddy KR, Shetti NP, Shim J, Aminabhavi TM (2019) Chemosphere 239:124766. https://doi.org/10.1016/j.chemosphere.2019.124766

    Article  CAS  PubMed  Google Scholar 

  18. Modwi A, Albadri A, Taha KK (2023) Diam Relat Mater 132:109698. https://doi.org/10.1016/j.diamond.2023.109698

    Article  CAS  Google Scholar 

  19. Biju R, Ravikumar R, Raghavan JRV, Indulal CR (2022) Bull Mater Sci 45:180. https://doi.org/10.1007/s12034-022-02753-x

    Article  CAS  Google Scholar 

  20. Basahel SN, Ali TT, Mokhtar M, Narasimharao K (2015) Nanoscale Res Lett 10:1. https://doi.org/10.1186/s11671-015-0780-z

    Article  CAS  Google Scholar 

  21. Rodríguez-Muñoz JL, Belman-Flores JM (2014) Renew Sustain Energy Rev 30:145–153

    Article  Google Scholar 

  22. Agorku ES, Kuvarega AT, Mamba BB, Pandey AC, Mishra AK (2015) J Rare Earths 33:498–506

    Article  CAS  Google Scholar 

  23. Mansour RB, Ouzzane M, Aidoun Z (2014) Int J Ref 43:36–49

    Article  Google Scholar 

  24. Kuznetsov PN, Kuznetsova LI, Zhyzhaev AM, Pashkov GL, Boldyrev VV (2002) Appl Catal A Gen 227:299–307

    Article  CAS  Google Scholar 

  25. Bisaria K, Sinha S, Singh R, Iqbal HMN (2021) Chemosphere 284:131263. https://doi.org/10.1016/j.chemosphere.2021.131263

    Article  CAS  PubMed  Google Scholar 

  26. Ghaedi H, Zhao M (2022) Energy Fuels 36:2424–2446

    Article  CAS  Google Scholar 

  27. Szczȩśniak B, Choma J, Jaroniec M (2021) Mater Adv 2:2510–2523

    Article  Google Scholar 

  28. Kumar A, Verma A, Singh A, Yadav BC (2023) Mater Today Proc 73:337–341

    Article  CAS  Google Scholar 

  29. Kumar KV, Porkodi K, Rocha F (2008) Catal Commun 9:82–84

    Article  CAS  Google Scholar 

  30. Jafarnejad G, Rabbani M (2019) In: Proceedings of the 4th International Electronic Conference on Water Sciences, 13–29. https://doi.org/10.3390/ECWS-4-06437

  31. Gupta VK, Jain R, Mittal A, Saleh TA, Nayak A, Agarwal S, Sikarwar S (2012) Mater Sci Eng, C 32:12–17

    Article  CAS  Google Scholar 

  32. Suriyaraj SP, Ramadoss G, Chandraraj K, Selvakumar R (2019) Mater Sci Eng C Mater Biol Appl 105:110021

    Article  PubMed  Google Scholar 

  33. Horti NC, Kamatagi MD, Nataraj SK, Wari MN, Inamdar SR. Nano Exp. https://doi.org/10.1088/2632-959X/ab8684

  34. Kumari N, Aulakh MK, Anand V, Sareen S, Verma M, Sharma A, Kataria R, Mutreja V (2022) Top Catal 65:1938–1950

    Article  CAS  Google Scholar 

  35. Huo S, Zhao H, Dong J, Xu J (2018) Electroanalysis 30:2121–2130

    Article  CAS  Google Scholar 

  36. Ding S, Zhao J, Yu Q (2019) Catalysts 9:768. https://doi.org/10.3390/catal9090768

    Article  CAS  Google Scholar 

  37. Dell’Agli G, Colantuono A, Mascolo G (1999) Solid State Ion 123:87–94

    Article  Google Scholar 

  38. Rahman NJA, Ramli A, Jumbri K, Uemura Y (2019) Sci Rep 9:1–12

    Article  Google Scholar 

  39. Wu X, Guo X, Zhang L (2019) Ind Eng Chem Res 58:342–349

    Article  CAS  Google Scholar 

  40. Chen S, Yin Y, Wang D, Liu Y, Wang X (2005) J Cryst Growth 282:498–505

    Article  CAS  Google Scholar 

  41. Rani S, Verma S, Kumar S (2017) Appl Phys A Mater Sci Process 123:1–5

    Article  Google Scholar 

  42. El-Shamy AG. Polymer (Guildf). https://doi.org/10.1016/j.polymer.2020.122565

  43. El-Shamy AG, Zayied HSS. Synth Met. https://doi.org/10.1016/j.synthmet.2019.116218

  44. Kuo CY, Wu CH, Wu JY (2008) J Colloid Interface Sci 327:308–315

    Article  CAS  PubMed  Google Scholar 

  45. Sareen S, Kaur S, Mutreja V, Sharma A, Kansal SK, Mehta SK (2022) Top Catal 65:1791–1810

    Article  CAS  Google Scholar 

  46. Khan I, Saeed K, Ali N, Khan I, Zhang B, Sadiq M (2020) J Environ Chem Eng 8:104364. https://doi.org/10.1016/j.jece.2020.104364

    Article  CAS  Google Scholar 

  47. Daneshvar N, Salari D, Khataee AR (2003) J Photochem Photobiol A Chem 157:111–116

    Article  CAS  Google Scholar 

  48. Gupta NK, Ghaffari Y, Kim S, Bae J, Kim KS, Saifuddin M (2020) Sci Rep 10:1–11

    Article  Google Scholar 

  49. Thakur S, Sareen S, Verma M, Kaur K, Mutreja V (2023) J Inorg Organomet Polym Mater 1. https://doi.org/10.1007/s10904-023-02686-w

  50. Bakry AM, Alamier WM, El-Shall MS, Awad FS (2022) J Market Res 20:1456–1469

    CAS  Google Scholar 

  51. Yuan Y, Wu Y, Suganthy N, Shanmugam S, Brindhadevi K, Sabour A, Alshiekheid M, Lan Chi NT, Pugazhendhi A, Shanmuganathan R (2022) Food Chem Toxicol 168:113340

    Article  CAS  PubMed  Google Scholar 

  52. Bansal P, Chaudhary GR, Mehta SK (2015) Chem Eng J 280:475–485

    Article  CAS  Google Scholar 

  53. Muhammad Z, Ali F, Sajjad M, Ali N, Bilal M, Shaik MR, Adil SF, Sharaf MA, Awwad EM, Khan M (2021) 1–15

  54. Vinayagam R, Singhania B, Murugesan G, Kumar PS, Bhole R, Narasimhan MK, Varadavenkatesan T, Selvaraj R (2022) Environ Res 214:113785. https://doi.org/10.1016/j.envres.2022.113785

    Article  CAS  PubMed  Google Scholar 

  55. Ghenaatgar A, Tehrani RMA, Khadir A (2019) J Water Process Eng 32:100969. https://doi.org/10.1016/j.jwpe.2019.100969

    Article  Google Scholar 

  56. Malik AQ, Tabasum S, Rani S, Lokhande P, Singh PP, Mooney J, Singh J, Alberto HAC, Sharma A, Aepuru R, Kumar D (2023) J Inorgan Organomet Poly Mater 1–17

  57. Athawale A, Bokare A, Singh H, Nguyen VH, Vo DVN, Kumar D, Sharma A (2020) Top Catal 63:1056–1065

    Article  CAS  Google Scholar 

  58. Moharana A, Kumar A, Thakur A, Vo DVN, Sharma A, Kumar D (2021) Nanostruct Photocatal 145–167

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shweta Sareen or Manish Dev Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1270 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, K., Kaur, K.J., Devvrat, D. et al. Synthesis of Polyhedral Zirconia Nanoparticles for The Photocatalytic Degradation of Anionic Congo Red Dye Under Visible Light Irradiation. Top Catal 67, 594–605 (2024). https://doi.org/10.1007/s11244-023-01897-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01897-2

Keywords

Navigation