Skip to main content

Advertisement

Log in

A Hybrid Photo-Electro Catalytic Conversion of Carbon dioxide Using CuO–MgO Nanocomposite

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Reducing carbon dioxide (CO2) into fuels accompanied by renewable resources has been under research since it helps to decrease CO2 levels in the atmosphere. The most suited source is solar energy which is generous and sustainable. In this aspect, photocatalysis (PC) and photo electrocatalysis (PEC) are favorable methods to utilize solar energy for CO2 reduction to carbonaceous fuels. A PEC system is more efficient than a PC system because of the ability to separate photogenerated holes and electrons for higher efficiency. The photo-electrochemical CO2 reduction reaction (PEC-CO2RR) can be considered as an artificial photosynthetic system that stores solar energy and stabilizes CO2 levels in the atmosphere. Here CuO–MgO nanocomposite (NC) is used for the effective PEC reduction of CO2 into viable carbonaceous fuels. A simple and scalable sol–gel process was used for synthesizing the CuO–MgO NC. The synthesized NC’s structural, morphological and elemental analysis was performed using XRD, Raman spectroscopy, SEM and EDX. Optical properties were evaluated using UV spectroscopy. The electrochemical and PEC analysis was carried out to study the catalytic behavior of CuO–MgO towards CO2 reduction by the cyclic voltammetry method. The CuO–MgO NC exhibited significantly improved PEC-CO2RR performance compared to electrochemical reduction alone. Moreover, the CuO–MgO NC displayed high structural stability and durability, which benchmark its potential towards PEC reduction to CO2 into carbonaceous fuels.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reddy MSB, Ponnamma D, Sadasivuni KK et al (2021) Carbon dioxide adsorption based on porous materials. RSC Adv 11:12658–12681. https://doi.org/10.1039/d0ra10902a

    Article  CAS  Google Scholar 

  2. Shi S, Yin J (2021) Global research on carbon footprint: a scientometric review. Environ Impact Assess Rev 89:106571. https://doi.org/10.1016/j.eiar.2021.106571

    Article  Google Scholar 

  3. Liu Z, Ciais P, Deng Z et al (2020) Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat Commun 11:5172. https://doi.org/10.1038/s41467-020-18922-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kannan K, Sliem MH, Abdullah AM et al (2020) Fabrication of ZnO–Fe-MXene based nanocomposites for efficient CO2 reduction. Catalysts 10:549. https://doi.org/10.3390/catal10050549

    Article  CAS  Google Scholar 

  5. Zhao Y, Liu Z (2019) Transformation of CO2 into Valuable Chemicals. In: Han B, Wu T (eds) Green Chemistry and Chemical Engineering. Springer, New York, pp 285–322

    Chapter  Google Scholar 

  6. Centi G, Iaquaniello G, Perathoner S (2019) Chemical engineering role in the use of renewable energy and alternative carbon sources in chemical production. BMC Chem Eng 1:5. https://doi.org/10.1186/s42480-019-0006-8

    Article  Google Scholar 

  7. He J, Janáky C (2020) Recent advances in solar-driven carbon dioxide conversion: expectations versus reality. ACS Energy Lett 5:1996–2014. https://doi.org/10.1021/acsenergylett.0c00645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu C, Hong J, Sui P et al (2020) standalone solar carbon-based fuel production based on semiconductors. Cell Rep Phys Sci 1:100101. https://doi.org/10.1016/j.xcrp.2020.100101

    Article  Google Scholar 

  9. Kumaravel V, Bartlett J, Pillai SC (2020) Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products. ACS Energy Lett 5:486–519. https://doi.org/10.1021/acsenergylett.9b02585

    Article  CAS  Google Scholar 

  10. Pan Z, Han E, Zheng J et al (2020) Highly efficient photoelectrocatalytic reduction of CO2 to Methanol by a p–n heterojunction CeO2/CuO/Cu catalyst. Nanomicro Lett 12:18. https://doi.org/10.1007/s40820-019-0354-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Adimule V, Nandi SS, Yallur BC et al (2021) Enhanced photoluminescence properties of Gd (x–1) Sr x O: CdO nanocores and their study of optical, structural, and morphological characteristics. Mater Today Chem 20:100438. https://doi.org/10.1016/j.mtchem.2021.100438

    Article  CAS  Google Scholar 

  12. Adimule V, Nandi SS, Yallur BC et al (2021) Optical, structural and photoluminescence properties of Gd x SrO: CdO nanostructures synthesized by co precipitation method. J Fluoresc 31:487–499. https://doi.org/10.1007/s10895-021-02683-7

    Article  CAS  PubMed  Google Scholar 

  13. Adimule V, Revaigh MG, Adarsha HJ (2020) Synthesis and fabrication of Y-doped ZnO nanoparticles and their application as a gas sensor for the detection of ammonia. J Mater Eng Perform 29:4586–4596. https://doi.org/10.1007/s11665-020-04979-4

    Article  CAS  Google Scholar 

  14. Hao L, Sun Z (2020) Metal Oxide-based materials for electrochemical CO2 reduction. Acta Phys Chimi Sin 37:2009033. https://doi.org/10.3866/PKU.WHXB202009033

    Article  Google Scholar 

  15. Kannan K, Radhika D, Nesaraj AS et al (2020) Photocatalytic, antibacterial and electrochemical properties of novel rare earth metal oxides-based nanohybrids. Mater Sci Energy Technol 3:853–861. https://doi.org/10.1016/j.mset.2020.10.008

    Article  CAS  Google Scholar 

  16. Abbas S, Uzair B, Sajjad S et al (2021) Dual-functional green facile CuO/MgO nanosheets composite as an efficient antimicrobial agent and photocatalyst. Arab J Sci Eng. https://doi.org/10.1007/s13369-021-05741-1

    Article  Google Scholar 

  17. Alla SK, Verma AD, Kumar V et al (2016) Solvothermal synthesis of CuO–MgO nanocomposite particles and their catalytic applications. RSC Adv 6:61927–61933. https://doi.org/10.1039/C6RA03762C

    Article  CAS  Google Scholar 

  18. Paramparambath S, Shafath S, Maurya MR et al (2021) Nonenzymatic electrochemical sensor based on CuO–MgO composite for dopamine detection. IEEE Sens J. https://doi.org/10.1109/jsen.2021.3112009

    Article  Google Scholar 

  19. Maurya MR, Toutam V, Haranath D (2017) Comparative study of photoresponse from vertically grown ZnO nanorod and nanoflake films. ACS Omega 2:5538–5544. https://doi.org/10.1021/acsomega.7b00914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rashad M, Rüsing M, Berth G et al (2013) CuO and Co3O4 nanoparticles: synthesis, characterizations, and raman spectroscopy. J Nanomater 2013:e714853. https://doi.org/10.1155/2013/714853

    Article  CAS  Google Scholar 

  21. Weng M, Zhang Z, Okejiri F et al (2021) Encapsulation of CuO nanoparticles within silicalite-1 as a regenerative catalyst for transfer hydrogenation of furfural. iScience 24:102884. https://doi.org/10.1016/j.isci.2021.102884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chrzanowski J, Irwin JC (1989) Raman scattering from cupric oxide. Solid State Commun 70:11–14. https://doi.org/10.1016/0038-1098(89)90457-2

    Article  CAS  Google Scholar 

  23. Li M, Guo W, Li H et al (2014) Electrochemical biosensor based on one-dimensional MgO nanostructures for the simultaneous determination of ascorbic acid, dopamine, and uric acid. Sens Actuators B 204:629–636. https://doi.org/10.1016/j.snb.2014.08.022

    Article  CAS  Google Scholar 

  24. Emayavaramban P, Babu SG, Karvembu R et al (2016) Gold nanoparticles supported on magnesium oxide nanorods for oxidation of alcohols. J Nanosci Nanotechnol 16:2517–2526. https://doi.org/10.1166/jnn.2016.10778

    Article  CAS  PubMed  Google Scholar 

  25. Weibel A, Mesguich D, Chevallier G et al (2018) Fast and easy preparation of few-layered-graphene/magnesia powders for strong, hard and electrically conducting composites. Carbon 136:270–279. https://doi.org/10.1016/j.carbon.2018.04.085

    Article  CAS  Google Scholar 

  26. Saad I, Hannachi N, Roisnel T, Hlel F (2019) Optical, UV-vis spectroscopy studies, electrical and dielectric properties of transition metal-based of the novel organic-inorganic hybrid (C 6 H 10 N 2 )(Hg 2 Cl 5 )2 .3H 2 O. J Adv Dielectr. https://doi.org/10.1142/S2010135X19500401

    Article  Google Scholar 

  27. Chen T, Stoebe T (1998) Role of copper in LiF:Mg, Cu, P thermoluminescent phosphors. Radiat Prot Dosim. https://doi.org/10.1093/OXFORDJOURNALS.RPD.A032339

    Article  Google Scholar 

  28. Kas R, Hummadi KK, Kortlever R et al (2016) Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction. Nat Commun 7:10748. https://doi.org/10.1038/ncomms10748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang W, Hu Y, Ma L et al (2018) Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci 5:1700275. https://doi.org/10.1002/advs.201700275

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried by the NPRP11S-1221-170116 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are exclusively the accountability of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishor Kumar Sadasivuni.

Ethics declarations

Conflict of interest

The corresponding author states that there are no conflict of interest to declare on behalf of all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sha, M.S., Maurya, M.R., Shafath, S. et al. A Hybrid Photo-Electro Catalytic Conversion of Carbon dioxide Using CuO–MgO Nanocomposite. Top Catal (2022). https://doi.org/10.1007/s11244-022-01579-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-022-01579-5

Keywords

Navigation