Skip to main content
Log in

Dual-Functional Green Facile CuO/MgO Nanosheets Composite as an Efficient Antimicrobial Agent and Photocatalyst

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, MgO and CuO/MgO nanomaterials were green-synthesized by Opuntia monacantha plant extract. Phytochemical analysis of methanolic extract of the plant showed the presence of terpenoids and flavonoids which are responsible for the synthesis of nanoparticles. XRD revealed the crystalline nature of cubical MgO and CuO/MgO nanocomposite that exhibited additional peaks related to CuO nanomaterial. FESEM images confirmed 2D flower-like nanosheets of MgO and defective crumpled structure of CuO/MgO nanocomposites. CuO adsorbed on interfaces of MgO nanosheets by making Cu–O–Mg linkage is studied in FTIR spectrum. Improved optical features of CuO/MgO composite and reduced bandgap were confirmed in UV–Vis analysis. Prepared samples were employed in antimicrobial and photocatalysis applications. The prepared MgO, CuO/MgO nanocomposite and their synergism with standard antibiotics showed significant antimicrobial activity against Candida albicans and Bacillus subtilis. CuO/MgO composite showed a higher degradation of methyl orange (MO) (88%) than MgO. These results are expected to develop a new eco-friendly and cheap MgO and CuO/MgO nanocomposite with potent antimicrobial and photocatalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2.
Fig. 7
Fig. 8
Scheme 3.

Similar content being viewed by others

References

  1. Haq, I.U.; Ijaz, S.; Khan, N.A.: Application of nanotechnology for integrated plant disease management. In: Haq, I.U., Ijaz, S. (eds.) Plant disease management strategies for sustainable agriculture through traditional and modern approaches, pp. 173–185. Springer, Cham (2020)

    Chapter  Google Scholar 

  2. Saxena, A.; Tripathi, R.M.; Singh, R.P.: Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig. J. Nanomater. Bios. 5, 427–432 (2010)

    Google Scholar 

  3. Valente, L.M.; da Paixão, D.; Do Nascimento, A.C.; dos Santos, P.F.; Scheinvar, L.A.; Moura, M.R.; Tinoco, L.W.; Gomes, L.N.; da Silva, J.F.: Antiradical activity, nutritional potential and flavonoids of the cladodes of Opuntia monacantha (Cactaceae). Food Chem. 123, 1127–1131 (2010)

    Article  Google Scholar 

  4. Morris, R.M.; Klabunde, K.J.: Formation of paramagnetic adsorbed molecules on thermally activated magnesium and calcium oxides. Characteristics of the active surface sites. Inorgan. Chem. 22, 682–687 (1983)

    Article  Google Scholar 

  5. Sasaki, T.; Shimizu, Y.; Koshizaki, N.: Preparation of metal oxide-based nanomaterials using nanosecond pulsed laser ablation in liquids. J. Photochem. Photobiol. A. 182, 335–341 (2006)

    Article  Google Scholar 

  6. Fedorov, P.P.; Tkachenko, E.A.; Kuznetsov, S.V.; Voronov, V.V.; Lavrishchev, S.V.: Preparation of MgO nanoparticles. Inorg. Mater. 43, 502–504 (2007)

    Article  Google Scholar 

  7. Rao, K.V.; Sunandana, C.S.: Structure and microstructure of combustion synthesized MgO nanoparticles and nanocrystalline MgO thin films synthesized by solution growth route. J. Mater. Sci. 43, 146–154 (2008)

    Article  Google Scholar 

  8. Naika, H.R.; Lingaraju, K.; Manjunath, K.; Kumar, D.; Nagaraju, G.; Suresh, D.; Nagabhushana, H.: Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J. Taibah Univ. Sci. 9, 7–12 (2015)

    Article  Google Scholar 

  9. Sondi, I.; Salopek-Sondi, B.: Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275, 177–182 (2004)

    Article  Google Scholar 

  10. Krishnamoorthy, K.; Umasuthan, N.; Mohan, R.; Lee, J.; Kim, S.J.: Antibacterial activity of graphene oxide nanosheets. Sci. Adv. Mater. 4, 1111–1117 (2012)

    Article  Google Scholar 

  11. Wu, B.S.; Abdelhamid, H.N.; Wu, H.F.: Synthesis and antibacterial activities of graphene decorated with stannous dioxide. RSC Adv. 4, 3722–3731 (2014)

    Google Scholar 

  12. Soni, A.; Sosa, S.: Phytochemical analysis and free radical scavenging potential of herbal and medicinal plant extracts. J. Pharmacogn. Phytochem. 2, 22–29 (2013)

    Google Scholar 

  13. Muthukrishnan, S.; Manogaran, P.: Phytochemical analysis and free radical scavenging potential activity of Vetiveria zizanioides Linn. J. Pharmacogn. Phytochem. 7, 1955–1960 (2018)

    Google Scholar 

  14. Elumalai, E.K.; Prasad, T.N.V.K.V.; Hemachandran, J.; Therasa, S.V.; Thirumalai, T.; David, E.: Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J. Pharm. Sci. Res. 2, 549–554 (2010)

    Google Scholar 

  15. Avanzato, C.P.; Follieri, J.M.; Banerjee, I.A.; Fath, K.R.: Biomimetic synthesis and antibacterial characteristics of magnesium oxide—germanium dioxide nanocomposite powders. J. Compos. Mater. 43, 897–910 (2009)

    Article  Google Scholar 

  16. Roshmi, T.; Soumya, K.R.; Jyothis, M.; Radhakrishnan, E.K.: Effect of biofabricated gold nanoparticle-based antibiotic conjugates on minimum inhibitory concentration of bacterial isolates of clinical origin. Gold Bull. 48, 63–71 (2015)

    Article  Google Scholar 

  17. Hussain, M.; Raja, N.I.; Iqbal, M.; Aslam, S.: Applications of plant flavonoids in the green synthesis of colloidal silver nanoparticles and impacts on human health. Iran. J. Sci. Technol. Trans. A Sci. 43, 1381–1392 (2019)

    Article  Google Scholar 

  18. Lei, M.; Wang, N.; Zhu, L.; Zhou, Q.; Nie, G.; Tang, H.: Photocatalytic reductive degradation of polybrominated diphenyl ethers on CuO/TiO2 nanocomposites: a mechanism based on the switching of photocatalytic reduction potential being controlled by the valence state of copper. Appl. Catal. B-Environ. 182, 414–423 (2016)

    Article  Google Scholar 

  19. Shamaila, S.; Sajjad, A.K.L.; Farooqi, S.A.; Jabeen, N.; Majeed, S.; Farooq, I.: Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Appl. Mater. Today. 5, 150–199 (2016)

    Article  Google Scholar 

  20. Al-Hazmi, F.; Alnowaiser, F.; Al-Ghamdi, A.A.; Al-Ghamdi, A.A.; Aly, M.M.; Al-Tuwirqi, R.M.; El-Tantawy, F.: A new large–scale synthesis of magnesium oxide nanowires: structural and antibacterial properties. Superlattice Microst. 52, 200–209 (2012)

    Article  Google Scholar 

  21. Shanan, Z.J.; Hadi, S.M.; Shanshool, S.K.: Structural analysis of chemical and green synthesis of CuO nanoparticles and their effect on biofilm formation. Baghdad Sci. J. 15, 211–216 (2018)

    Article  Google Scholar 

  22. de Campo, C.; Dick, M.; dos Santos, P.P.; Costa, T.M.H.; Paese, K.; Guterres, S.S.; de Oliveira, R.A.; Flôres, S.H.: Zeaxanthin nanoencapsulation with Opuntia monacantha mucilage as structuring material: characterization and stability evaluation under different temperatures. Colloids Surf. A Physicochem. Eng. Asp. 558, 410–421 (2018)

    Article  Google Scholar 

  23. Kandiban, M.; Vigneshwaran, P.; Potheher, I.V.: Synthesis and characterization of MgO nanoparticles for photocatalytic applications: In: Conference Paper. Department of Physics, Bharathidasan Institute of Technology (BIT) Campus, Anna University, Tiruchirappalli, Tamilnadu, India (2015)

  24. Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V.: Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 7, 1831 (2016)

    Article  Google Scholar 

  25. Iqbal, A.; Sajjad, S.; Leghari, S.A.K.: Low cost graphene oxide modified alumina nanocomposite as solar light induced photocatalyst. ACS Appl. Nano Mater. 1(9), 4612–4621 (2018)

    Article  Google Scholar 

  26. Alavi, M.A.; Morsali, A.: Alkaline-earth metal carbonate, hydroxide and oxide nano-crystals synthesis methods, size and morphologies consideration. In: Nanocrystal, pp. 237–262 (2011)

  27. El-Moslamy, S.H.: Bioprocessing strategies for cost-effective large-scale biogenic synthesis of nano-MgO from endophytic Streptomyces coelicolor strain E72 as an anti-multidrug-resistant pathogens agent. Sci. Rep. 8, 1–22 (2018)

    Article  Google Scholar 

  28. Nguyen, N.Y.T.; Grelling, N.; Wetteland, C.L.; Rosario, R.; Liu, H.: Antimicrobial activities and mechanisms of magnesium oxide nanoparticles (nMgO) against pathogenic bacteria, yeasts, and biofilms. Sci. Rep. 8, 1–23 (2018)

    Article  Google Scholar 

  29. Nasrollahzadeh, M.; Issaabadi, Z.; Sajadi, S.M.: Green synthesis of a Cu/MgO nanocomposite by Cassytha filiformis L. extract and investigation of its catalytic activity in the reduction of methylene blue, congo red and nitro compounds in aqueous media. RSC Adv. 8, 3723–3735 (2018)

    Article  Google Scholar 

  30. Zheng, Y.; Cao, L.; Xing, G.; Bai, Z.; Huang, J.; Zhang, Z.: Microscale flower-like magnesium oxide for highly efficient photocatalytic degradation of organic dyes in aqueous solution. RSC Adv. 9, 7338–7348 (2019)

    Article  Google Scholar 

  31. Tarafdar, J.C.; Raliya, R.; Rathore, I.: Microbial synthesis of phosphorous nanoparticle from tri-calcium phosphate using Aspergillus tubingensis TFR-5. J. Bionanosci. 6, 84–89 (2012)

    Article  Google Scholar 

  32. Vergheese, M.; Vishal, S.K.: Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity. J. Pharmacogn. Phytochem. 7, 1193–1200 (2018)

    Google Scholar 

  33. Pugazhendhi, A.; Prabhu, R.; Muruganantham, K.; Shanmuganathan, R.; Natarajan, S.: Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J. Photochem. Photobiol. B Biol. 190, 86–97 (2019)

    Article  Google Scholar 

  34. Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; Kim, Y.K.: Antimicrobial effects of silver nanoparticles. Nanomedicine 3, 95–101 (2007)

    Article  Google Scholar 

  35. Dadi, R.; Azouani, R.; Traore, M.; Mielcarek, C.; Kanaev, A.: Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Mater. Sci. Eng. C. 104, 109968 (2019)

    Article  Google Scholar 

  36. Applerot, G.; Lellouche, J.; Lipovsky, A.; Nitzan, Y.; Lubart, R.; Gedanken, A.; Banin, E.: Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8, 3326–3337 (2012)

    Article  Google Scholar 

  37. Tang, Z.X.; Lv, B.F.: MgO nanoparticles as antibacterial agent: preparation and activity. Braz. J. Chem. Eng. 31, 591–601 (2014)

    Article  Google Scholar 

  38. Manke, A.; Wang, L.; Rojanasakul, Y.: Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed. Res. Int. 2013, 1–15 (2013)

    Article  Google Scholar 

  39. McShan, D.; Zhang, Y.; Deng, H.; Ray, P.C.; Yu, H.: Synergistic antibacterial effect of silver nanoparticles combined with ineffective antibiotics on drug resistant Salmonella typhimurium DT104. J. Environ. Sci. Health C 33, 369–384 (2015)

    Article  Google Scholar 

  40. Barapatre, A.; Aadil, K.R.; Jha, H.: Synergistic antibacterial and antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading fungus. Bioresour. Bioprocess. 3, 1–13 (2016)

    Article  Google Scholar 

  41. Gajbhiye, M.; Kesharwani, J.; Ingle, A.; Gade, A.; Rai, M.: Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5, 382–386 (2009)

    Article  Google Scholar 

  42. Khan, Z.U.; Chandy, R.; Metwali, K.E.: Candida albicans strain carriage in patients and nursing staff of an intensive care unit: a study of morphotypes and resistotypes. Mycoses 46, 479–486 (2003)

    Article  Google Scholar 

  43. Suresh, J.; Pradheesh, G.; Alexramani, V.; Sundrarajan, M.; Hong, S.I.: Green synthesis and characterization of hexagonal shaped MgO nanoparticles using insulin plant (Costus pictus D. Don) leave extract and its antimicrobial as well as anticancer activity. Adv. Powder. Technol. 29, 1685–1694 (2018)

    Article  Google Scholar 

  44. Noor, S.; Sajjad, S.; Leghari, S.A.K.; Ahmad, I.; Mahmood, T.: Visible light efficient and photo stable nanostructure of GO/CuO/m-TiO2 ternary composite. Mater. Res. Express. 6, 1250d8 (2020)

    Article  Google Scholar 

  45. Noor, S.; Sajjad, S.; Leghari, S.A.K.; Flox, C.; Ahmad, S.: Competitive role of nitrogen functionalities of N doped GO and sensitizing effect of Bi2O3 QDs on TiO2 for water remediation. J. Environ. Sci. 108, 107–119 (2021)

    Article  Google Scholar 

  46. Kanwal, A.; Sajjad, S.; Leghari, S.A.K.; Yousaf, Z.: Cascade electron transfer in ternary CuO/α-Fe2O3/γ–Al2O3 nanocomposite as an effective visible photocatalyst. J. Phys. Chem. Solids. 151, 109899 (2021)

    Article  Google Scholar 

  47. Reddy, K.H.; Parida, K.; Satapathy, P.K.: CuO/PbTiO3: a new-fangled p–n junction designed for the efficient absorption of visible light with augmented interfacial charge transfer, photoelectrochemical and photocatalytic activities. J. Mater. Chem. A. 5, 20359–20373 (2017)

    Article  Google Scholar 

  48. Jamila, G.S.; Sajjad, S.; Leghari, S.A.K.; Mahmood, T.: Role of nitrogen doped carbon quantum dots on CuO nano-leaves as solar induced photo catalyst. J. Phys. Chem. Solids. 138, 109233 (2020)

    Article  Google Scholar 

  49. Noor, S.; Sajjad, S.; Leghari, S.A.K.; Flox, C.; Kallio, T.: Efficient electrochemical hydrogen evolution reaction and solar activity via bi-functional GO/CO3O4–TiO2 nano hybrid structure. Int. J. Hydrog. Energy. 45, 17410–17421 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by International Islamic University Islamabad, Higher Education Commission of Pakistan (NRPU 3660) and Pakistan Institute of Engineering and Applied Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamaila Sajjad.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare for the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, S., Uzair, B., Sajjad, S. et al. Dual-Functional Green Facile CuO/MgO Nanosheets Composite as an Efficient Antimicrobial Agent and Photocatalyst. Arab J Sci Eng 47, 5895–5909 (2022). https://doi.org/10.1007/s13369-021-05741-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05741-1

Keywords

Navigation