Skip to main content

Advertisement

Log in

Oleic Acid Esterification Catalyzed by Zeolite Y-Model of the Biomass Conversion

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Residual oils and fats are promising renewable sources for the production of liquid fuels and the synthesis of various chemicals with significant life cycle and large-scale economic advantages over other biomass sources. Thus, oleic acid esterification was investigated on zeolites type FAU and sulfuric acid by kinetic, spectroscopic assessments and theoretical calculations using a hybrid ONIOM scheme. In the catalytic tests, the solid catalyst with the highest Si/Al (H-Y-80) ratio showed the highest catalytic activity for esterification (92% conversion) as compared to H-Y-5.2 (66% conversion), Na-Y (15% conversion) and homogeneous acid catalysis (89% conversion). The catalytic activity between different acid catalysts is discussed. It was observed that the acidity of the active sites and the hydrophobicity resulting from the Si/Al molar ratio influence the esterification conversion. Theoretical calcultations predicts that the voluminous confined space of the FAU zeolite perfectly accommodates the oleic acid molecule in the adsorption step (Eads = − 25.5 kJ mol−1) and the van der Waals interactions of the zeolite walls with the aliphatic chain help to accommodate the bulky molecule between the supercages. Experimental and theoretical results confirm that H-Y-80 zeolite applied in the esterification reaction can be an efficient catalyst in processes involving conversion of unsaturated fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu L, Moteki T, Gokhale Amit A, Flaherty David W, Toste FD (2016) Production of fuels and chemicals from biomass: condensation reactions and beyond. Chem Biomol Eng 1(1):32–58. https://doi.org/10.1016/j.chempr.2016.05.002

    Article  CAS  Google Scholar 

  2. Dusselier M, Davis ME (2018) Small-pore zeolites: synthesis and catalysis. Chem Rev 118(11):5265–5329. https://doi.org/10.1021/acs.chemrev.7b00738

    Article  CAS  PubMed  Google Scholar 

  3. Lilja J, Murzin DY, Salmi T, Aumo J, Mäki-Arvela P, Sundell M (2002) Esterification of different acids over heterogeneous and homogeneous catalysts and correlation with the Taft equation. J Mol Catal A 182–183:555–563. https://doi.org/10.1016/S1381-1169(01)00495-2

    Article  Google Scholar 

  4. Liu Y, Lotero E, Goodwin JG (2006) A comparison of the esterification of acetic acid with methanol using heterogeneous versus homogeneous acid catalysis. J Catal 242(2):278–286. https://doi.org/10.1016/j.jcat.2006.05.026

    Article  CAS  Google Scholar 

  5. Chouhan APS, Sarma AK (2011) Modern heterogeneous catalysts for biodiesel production: a comprehensive review. Renew Sustain Energy Rev 15(9):4378–4399. https://doi.org/10.1016/j.rser.2011.07.112

    Article  CAS  Google Scholar 

  6. Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem Soc Rev 43(22):7887–7916. https://doi.org/10.1039/C4CS00189C

    Article  CAS  PubMed  Google Scholar 

  7. Chouhan APS, Sarma AK (2011) Modern heterogeneous catalysts for biodiesel production: a comprehensive review. Renew Sustain Energy Rev 15(9):4378–4399. https://doi.org/10.1016/j.rser.2011.07.112

    Article  CAS  Google Scholar 

  8. Semwal S, Arora AK, Badoni RP, Tuli DK (2011) Biodiesel production using heterogeneous catalysts. Bioresour Technol 102(3):2151–2161. https://doi.org/10.1016/j.biortech.2010.10.080

    Article  CAS  PubMed  Google Scholar 

  9. Gupta P, Paul S (2014) Solid acids: green alternatives for acid catalysis. Catal Today 236:153–170. https://doi.org/10.1016/j.cattod.2014.04.010

    Article  CAS  Google Scholar 

  10. Sani YM, Daud WMAW, Abdul Aziz AR (2014) Activity of solid acid catalysts for biodiesel production: a critical review. Appl Catal A 470:140–161. https://doi.org/10.1016/j.apcata.2013.10.052

    Article  CAS  Google Scholar 

  11. Ennaert T, Van Aelst J, Dijkmans J, De Clercq R, Schutyser W, Dusselier M, Verboekend D, Sels BF (2016) Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem Soc Rev 45(3):584–611. https://doi.org/10.1039/C5CS00859J

    Article  CAS  PubMed  Google Scholar 

  12. Resasco DE, Wang B, Crossley S (2016) Zeolite-catalysed C–C bond forming reactions for biomass conversion to fuels and chemicals. Catal Sci Technol 6(8):2543–2559. https://doi.org/10.1039/C5CY02271A

    Article  CAS  Google Scholar 

  13. Corma A (2016) Heterogeneous catalysis: understanding for designing, and designing for applications. Angew Chem Int Ed 55(21):6112–6113. https://doi.org/10.1002/anie.201601231

    Article  CAS  Google Scholar 

  14. Kirumakki SR, Nagaraju N, Narayanan S (2004) A comparative esterification of benzyl alcohol with acetic acid over zeolites Hβ, HY and HZSM5. Appl Catal A 273(1–2):1–9. https://doi.org/10.1016/j.apcata.2004.03.016

    Article  CAS  Google Scholar 

  15. Kirumakki SR, Nagaraju N, Chary KVR (2006) Esterification of alcohols with acetic acid over zeolites Hβ, HY and HZSM5. Appl Catal A 299:185–192. https://doi.org/10.1016/j.apcata.2005.10.033

    Article  CAS  Google Scholar 

  16. Bedard J, Chiang H, Bhan A (2012) Kinetics and mechanism of acetic acid esterification with ethanol on zeolites. J Catal 290:210–219. https://doi.org/10.1016/j.jcat.2012.03.020

    Article  CAS  Google Scholar 

  17. Gomes GJ, Zalazar MF, Lindino CA, Scremin FR, Bittencourt PRS, Costa MB, Peruchena NM (2017) Adsorption of acetic acid and methanol on H-Beta zeolite: an experimental and theoretical study. Microporous Mesoporous Mater 252:17–28. https://doi.org/10.1016/j.micromeso.2017.06.008

    Article  CAS  Google Scholar 

  18. Aranda DAG, Gonçalves JdA, Peres JS, Ramos ALD, de Melo CAR, Antunes OAC, Furtado NC, Taft CA (2009) The use of acids, niobium oxide, and zeolite catalysts for esterification reactions. J Phys Org Chem 22(7):709–716. https://doi.org/10.1002/poc.1520

    Article  CAS  Google Scholar 

  19. Hartmann M, Machoke AG, Schwieger W (2016) Catalytic test reactions for the evaluation of hierarchical zeolites. Chem Soc Rev 45(12):3313–3330. https://doi.org/10.1039/C5CS00935A

    Article  CAS  PubMed  Google Scholar 

  20. Carrero A, Vicente G, Rodríguez R, Linares M, del Peso GL (2011) Hierarchical zeolites as catalysts for biodiesel production from nannochloropsis microalga oil. Catal Today 167(1):148–153. https://doi.org/10.1016/j.cattod.2010.11.058

    Article  CAS  Google Scholar 

  21. Fernandes DR, Rocha AS, Mai EF, Mota CJA, Teixeira da Silva V (2012) Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Appl Catal A 425–426:199–204. https://doi.org/10.1016/j.apcata.2012.03.020

    Article  CAS  Google Scholar 

  22. Chung K-H, Chang D-R, Park B-G (2008) Removal of free fatty acid in waste frying oil by esterification with methanol on zeolite catalysts. Bioresour Technol 99(16):7438–7443. https://doi.org/10.1016/j.biortech.2008.02.031

    Article  CAS  PubMed  Google Scholar 

  23. Chung K-H, Park B-G (2009) Esterification of oleic acid in soybean oil on zeolite catalysts with different acidity. J Ind Eng Chem 15(3):388–392. https://doi.org/10.1016/j.jiec.2008.11.012

    Article  CAS  Google Scholar 

  24. Vieira SS, Magriotis ZM, Santos NAV, Saczk AA, Hori CE, Arroyo PA (2013) Biodiesel production by free fatty acid esterification using lanthanum (La3+) and HZSM-5 based catalysts. Bioresour Technol 133:248–255. https://doi.org/10.1016/j.biortech.2013.01.107

    Article  CAS  PubMed  Google Scholar 

  25. Vieira SS, Magriotis ZM, Ribeiro MF, Graça I, Fernandes A, Lopes JMFM, Coelho SM, Santos NAV, Saczk AA (2015) Use of HZSM-5 modified with citric acid as acid heterogeneous catalyst for biodiesel production via esterification of oleic acid. Microporous Mesoporous Mater 201:160–168. https://doi.org/10.1016/j.micromeso.2014.09.015

    Article  CAS  Google Scholar 

  26. Vieira SS, Magriotis ZM, Graça I, Fernandes A, Ribeiro MF, Lopes JMFM, Coelho SM, Santos NAV, Saczk AA (2017) Production of biodiesel using HZSM-5 zeolites modified with citric acid and SO4 2−/La2O3. Catal Today 279(2):267–273. https://doi.org/10.1016/j.cattod.2016.04.014

    Article  CAS  Google Scholar 

  27. Prinsen P, Luque R, González-Arellano C (2018) Zeolite catalyzed palmitic acid esterification. Microporous Mesoporous Mater 262:133–139. https://doi.org/10.1016/j.micromeso.2017.11.029

    Article  CAS  Google Scholar 

  28. Doyle AM, Albayati TM, Abbas AS, Alismaeel ZT (2016) Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin. Renew Energy 97:19–23. https://doi.org/10.1016/j.renene.2016.05.067

    Article  CAS  Google Scholar 

  29. Busca G (2017) Acidity and basicity of zeolites: a fundamental approach. Microporous Mesoporous Mater 254:3–16. https://doi.org/10.1016/j.micromeso.2017.04.007

    Article  CAS  Google Scholar 

  30. Kaduk JA, Faber J (1995) Crystal structure of zeolite Y as a function of ion exchange. Rigaku J 12(2):14–34

    Google Scholar 

  31. Corma A, Garcia H, Iborra S, Primo J (1989) Modified faujasite zeolites as catalysts in organic reactions: esterification of carboxylic acids in the presence of HY zeolites. J Catal 120(1):78–87. https://doi.org/10.1016/0021-9517(89)90252-2

    Article  CAS  Google Scholar 

  32. Bouguerra Neji S, Trabelsi M, Frikha M (2009) Esterification of fatty acids with short-chain alcohols over Commercial acid clays in a semi-continuous reactor. Energies 2(4):1107

    Article  Google Scholar 

  33. Doyle AM, Alismaeel ZT, Albayati TM, Abbas AS (2017) High purity FAU-type zeolite catalysts from shale rock for biodiesel production. Fuel 199:394–402. https://doi.org/10.1016/j.fuel.2017.02.098

    Article  CAS  Google Scholar 

  34. Verstraelen T, Van Speybroeck V, Waroquier M (2008) ZEOBUILDER: a GUI toolkit for the construction of complex molecular structures on the nanoscale with building blocks. J Chem Inf Model 48(7):1530–1541. https://doi.org/10.1021/ci8000748

    Article  CAS  PubMed  Google Scholar 

  35. Maseras F, Morokuma K (1995) IMOMM: a new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J Comput Chem 16(9):1170–1179. https://doi.org/10.1002/jcc.540160911

    Article  CAS  Google Scholar 

  36. Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li H-B, Ding L, Morokuma K (2015) The ONIOM method and its applications. Chem Rev 115(12):5678–5796. https://doi.org/10.1021/cr5004419

    Article  CAS  PubMed  Google Scholar 

  37. Zalazar MF, Paredes EN, Romero Ojeda GD, Cabral ND, Peruchena N (2018) Study of confinement and catalysis effects of the reaction of methylation of benzene by methanol in H-beta and H-ZSM-5 zeolites by topological analysis of electron density. J Phys Chem C 122(6):3350–3362. https://doi.org/10.1021/acs.jpcc.7b10297

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski G, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09, Revision A.01 edn. Gaussian, Inc, Wallingford

    Google Scholar 

  39. Bordiga S, Lamberti C, Bonino F, Travert A, Thibault-Starzyk F (2015) Probing zeolites by vibrational spectroscopies. Chem Soc Rev 44(20):7262–7341. https://doi.org/10.1039/C5CS00396B

    Article  CAS  PubMed  Google Scholar 

  40. Salman N, Rüscher CH, Buhl JC, Lutz W, Toufar H, Stöcker M (2006) Effect of temperature and time in the hydrothermal treatment of HY zeolite. Microporous Mesoporous Mater 90(1):339–346. https://doi.org/10.1016/j.micromeso.2005.09.032

    Article  CAS  Google Scholar 

  41. Zhao J, Yin Y, Li Y, Chen W, Liu B (2016) Synthesis and characterization of mesoporous zeolite Y by using block copolymers as templates. Chem Eng J 284:405–411. https://doi.org/10.1016/j.cej.2015.08.143

    Article  CAS  Google Scholar 

  42. Murphy B, Davis ME, Xu B (2015) The effect of adsorbed molecule gas-phase deprotonation enthalpy on ion exchange in sodium exchanged zeolites: an in situ FTIR investigation. Top Catal 58(7):393–404. https://doi.org/10.1007/s11244-015-0383-z

    Article  CAS  Google Scholar 

  43. Guisnet M, Guidotti M (2006) Catalysts for fine chemical synthesis: microporous and mesoporous solid catalysts. In: Roberts EGDSM (ed) Microporous and mesoporous solid catalysts, vol 4. Wiley, New York, pp 39–67

    Chapter  Google Scholar 

  44. Arca HA, Mota CJA (2018) Rearrangement of cyclopropylcarbinyl chloride over protonic zeolites: formation of carbocations and behavior as solid solvents. Top Catal 61(7):616–622. https://doi.org/10.1007/s11244-018-0911-8

    Article  CAS  Google Scholar 

  45. Mistry SR, Joshi RS, Sahoo SK, Maheria KC (2011) Synthesis of dihydropyrimidinones using large pore zeolites. Catal Lett 141(10):1541–1547. https://doi.org/10.1007/s10562-011-0639-6

    Article  CAS  Google Scholar 

  46. Liu Y, Lotero E, Goodwin JG (2006) Effect of water on sulfuric acid catalyzed esterification. J Mol Catal A 245(1):132–140. https://doi.org/10.1016/j.molcata.2005.09.049

    Article  CAS  Google Scholar 

  47. Marchetti JM, Errazu AF (2008) Comparison of different heterogeneous catalysts and different alcohols for the esterification reaction of oleic acid. Fuel 87(15):3477–3480. https://doi.org/10.1016/j.fuel.2008.05.011

    Article  CAS  Google Scholar 

  48. Flanigen EM, Khatami H, Szymanski HA (1974) Infrared structural studies of zeolite frameworks. Advances in Chemistry, vol 101. Molecular sieve zeolites-I. American Chemical Society, Washington, pp 201–229

    Google Scholar 

  49. Herrmann S, Iglesia E (2017) Elementary steps in acetone condensation reactions catalyzed by aluminosilicates with diverse void structures. J Catal 346:134–153. https://doi.org/10.1016/j.jcat.2016.12.011

    Article  CAS  Google Scholar 

  50. Sarazen ML, Iglesia E (2018) Effects of charge, size, and shape of transition states, bound intermediates, and confining voids in reactions of alkenes on solid acids. ChemCatChem 10(18):4028–4037. https://doi.org/10.1002/cctc.201800401

    Article  CAS  Google Scholar 

  51. Yan H, Feng X, Liu Y, Yang C, Shan H (2017) Catalytic cracking of acetic acid and its ketene intermediate over HZSM-5 catalyst: a density functional theory study. Mol Catal 437:11–17. https://doi.org/10.1016/j.mcat.2017.04.038

    Article  CAS  Google Scholar 

  52. Gomes GJ, Zalazar MF, Arroyo PA, Scremin FR, Costa MB, Bittencourt PRS, Lindino CA, Peruchena NM (2019) Molecular-level understanding of the rate-determining step in esterification reactions catalyzed by H-ZSM-5 Zeolite. An experimental and theoretical study. ChemSelect 4(11):3031–3041. https://doi.org/10.1002/slct.201900689

    Article  CAS  Google Scholar 

  53. Kesharwani MK, Brauer B, Martin JML (2015) Frequency and zero-point vibrational energy scale factors for double-hybrid density functionals (and other selected methods): can anharmonic force fields be avoided? J Phys Chem A 119(9):1701–1714. https://doi.org/10.1021/jp508422u

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was made possible by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Secretaría General de Ciencia y Técnica of the Universidad Nacional del Nordeste (SGCyT-UNNE) of Argentine, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) of Brazil. The authors would also like to acknowledge Dr. Marcucci, S. M. P. and Ms. Duarte, V. A. at the Universidade Estadual de Maringá for his assistance in performing the CG-FID and NH3-TPD measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to María Fernanda Zalazar or Pedro Augusto Arroyo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, G.J., Dal Pozzo, D.M., Zalazar, M.F. et al. Oleic Acid Esterification Catalyzed by Zeolite Y-Model of the Biomass Conversion. Top Catal 62, 874–883 (2019). https://doi.org/10.1007/s11244-019-01172-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-019-01172-3

Keywords

Navigation