Skip to main content
Log in

New Insights into the Effect of the Zeolites Framework Topology on the Esterification Reactions: A Comparative Study from Experiments and Theoretical Calculations

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Understanding the catalytic activity of protonic zeolites in biomass conversion allows design catalysts specific for various industrial applications resulting in a strong economic impact. The aim of the present work is to analyze the influence of the pore topology and density of active sites comparing H-ZSM-5, H-Beta and H-Y zeolites as solid acid catalysts for the esterification of oleic acid. The catalysts were characterized using XRF, N2 isotherms, NH3-TPD and, 27Al MAS-NMR techniques, catalytic tests were conducted in a batch reactor (20 bar N2, 100 ℃ and 600 RPM), theoretical investigations by DFT calculations were also performed. Zeolites with lower Al density (H-Y and H-ZSM-5) showed higher acid strength, however, H-Beta showed higher conversion than H-ZSM-5 because in BEA-type structures the Al are found in places that are more accessible. H-Y was highly effective for this reaction (98% conversion) and exhibiting promising recyclability, which could be related to their high specific area, hydrophobicity effect and symbiosis between Brønsted acid sites and the presence of extra-framework aluminum inside the zeolite cavity. H-ZSM-5 showed a 70% conversion yield due to the high Si/Al ratio and the additional porosity of this de-aluminized material. DFT results showed that the channel system of H-Y and H-Beta zeolite framework favor the stabilization of coadsorbed species within their confined environments, and such effect could minimize the activation barrier in consecutive steps of the reaction. Our results suggest the use of protonic zeolites as strategic catalytic material in the recovery of oleaginous residues to obtain products with higher added value.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Oreggioni GD, Monforti Ferraio F, Crippa M, Muntean M, Schaaf E, Guizzardi D, Solazzo E, Duerr M, Perry M, Vignati E (2021) Climate change in a changing world: socio-economic and technological transitions, regulatory frameworks and trends on global greenhouse gas emissions from EDGAR v.5.0. Glob Environ Change 70:102350. https://doi.org/10.1016/j.gloenvcha.2021.102350

    Article  Google Scholar 

  2. Mendiara T, García-Labiano F, Abad A, Gayán P, de Diego LF, Izquierdo MT, Adánez J (2018) Negative CO2 emissions through the use of biofuels in chemical looping technology: a review. Appl Energy 232:657–684. https://doi.org/10.1016/j.apenergy.2018.09.201

    Article  CAS  Google Scholar 

  3. Cremonez PA, Teleken JG, Weiser Meier T (2021) Potential of green diesel to complement the Brazilian energy production: a review. Energy Fuels 35(1):176–186. https://doi.org/10.1021/acs.energyfuels.0c03805

    Article  CAS  Google Scholar 

  4. Singh D, Sharma D, Soni SL, Inda CS, Sharma S, Sharma PK, Jhalani A (2021) A comprehensive review of biodiesel production from waste cooking oil and its use as fuel in compression ignition engines: 3rd generation cleaner feedstock. J Clean Prod 307:127299. https://doi.org/10.1016/j.jclepro.2021.127299

    Article  CAS  Google Scholar 

  5. Antar M, Lyu D, Nazari M, Shah A, Zhou X, Smith DL (2021) Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization. Renew Sust Energ Rev 139:110691. https://doi.org/10.1016/j.rser.2020.110691

    Article  CAS  Google Scholar 

  6. Espro C, Paone E, Mauriello F, Gotti R, Uliassi E, Bolognesi ML, Rodríguez-Padrón D, Luque R (2021) Sustainable production of pharmaceutical, nutraceutical and bioactive compounds from biomass and waste. Chem Soc Rev 50(20):11191–11207. https://doi.org/10.1039/D1CS00524C

    Article  CAS  PubMed  Google Scholar 

  7. Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem Soc Rev 43(22):7887–7916. https://doi.org/10.1039/C4CS00189C

    Article  CAS  PubMed  Google Scholar 

  8. Ennaert T, Van Aelst J, Dijkmans J, De Clercq R, Schutyser W, Dusselier M, Verboekend D, Sels BF (2016) Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem Soc Rev 45(3):584–611. https://doi.org/10.1039/C5CS00859J

    Article  CAS  PubMed  Google Scholar 

  9. Fattahi N, Triantafyllidis K, Luque R, Ramazani A (2019) Zeolite-based catalysts: a valuable approach toward ester bond formation. Catalysts 9(9):758. https://doi.org/10.3390/catal9090758

    Article  CAS  Google Scholar 

  10. Shi H, Wang Y, Hua R (2015) Acid-catalyzed carboxylic acid esterification and ester hydrolysis mechanism: acylium ion as a sharing active intermediate via a spontaneous trimolecular reaction based on density functional theory calculation and supported by electrospray ionization-mass spectrometry. Phys Chem Chem Phys 17(45):30279–30291. https://doi.org/10.1039/C5CP02914G

    Article  CAS  PubMed  Google Scholar 

  11. Busca G, Gervasini A (2020) Chapter one—solid acids, surface acidity and heterogeneous acid catalysis. In: Song C (ed) Advances in catalysis, vol 67. Academic Press, New York, pp 1–90. https://doi.org/10.1016/bs.acat.2020.09.003

    Chapter  Google Scholar 

  12. Toledo MV, Llerena Suster CR, Ruscitti C, Collins SE, Briand LE (2019) Influence of water on enzymatic esterification of racemic ketoprofen with ethanol in a solvent-free system. Top Catal 62(12):968–976. https://doi.org/10.1007/s11244-019-01184-z

    Article  CAS  Google Scholar 

  13. Toledo MV, José C, Suster CRL, Collins SE, Portela R, Bañares MA, Briand LE (2021) Catalytic and molecular insights of the esterification of ibuprofen and ketoprofen with glycerol. Mol Catal 513:111811. https://doi.org/10.1016/j.mcat.2021.111811

    Article  CAS  Google Scholar 

  14. Mateos PS, Navas MB, Morcelle SR, Ruscitti C, Matkovic SR, Briand LE (2021) Insights in the biocatalyzed hydrolysis, esterification and transesterification of waste cooking oil with a vegetable lipase. Catal Today 372:211–219. https://doi.org/10.1016/j.cattod.2020.09.027

    Article  CAS  Google Scholar 

  15. Araki CA, Marcucci SMP, da Silva LS, Maeda CH, Arroyo PA, Zanin GM (2018) Effects of a combination of lipases immobilised on desilicated and thiol-modified ZSM-5 for the synthesis of ethyl esters from macauba pulp oil in a solvent-free system. Appl Catal A: Gen 562:241–249. https://doi.org/10.1016/j.apcata.2018.06.007

    Article  CAS  Google Scholar 

  16. Marcucci SMP, Araki CA, da Silva LS, Zanin GM, Arroyo PA (2021) Influence of the chain length of the fatty acids present in different oils and the pore diameter of the support on the catalytic activity of immobilized lipase for ethyl ester production. Braz J Chem Eng 38(3):511–522. https://doi.org/10.1007/s43153-021-00132-3

    Article  CAS  Google Scholar 

  17. Dal Pozzo DM, Azevedo dos Santos JA, Júnior ES, Santos RF, Feiden A, Melegari de Souza SN, Burgardt I (2019) Free fatty acids esterification catalyzed by acid Faujasite type zeolite. RSC Adv 9(9):4900–4907. https://doi.org/10.1039/C8RA10248A

    Article  Google Scholar 

  18. Fawaz EG, Salam DA, Pinard L, Daou TJ (2019) Study on the catalytic performance of different crystal morphologies of HZSM-5 zeolites for the production of biodiesel: a strategy to increase catalyst effectiveness. Catal Sci Technol 9(19):5456–5471. https://doi.org/10.1039/C9CY01427F

    Article  CAS  Google Scholar 

  19. Fawaz EG, Salam DA, Daou TJ (2020) Esterification of linoleic acid using HZSM-5 zeolites with different Si/Al ratios. Microporous Mesoporous Mater 294:109855. https://doi.org/10.1016/j.micromeso.2019.109855

    Article  CAS  Google Scholar 

  20. Ketzer F, Celante D, de Castilhos F (2020) Catalytic performance and ultrasonic-assisted impregnation effects on WO3/USY zeolites in esterification of oleic acid with methyl acetate. Microporous Mesoporous Mater 291:109704. https://doi.org/10.1016/j.micromeso.2019.109704

    Article  CAS  Google Scholar 

  21. Mardiana S, Azhari NJ, Ilmi T, Kadja GTM (2022) Hierarchical zeolite for biomass conversion to biofuel: A review. Fuel 309:122119. https://doi.org/10.1016/j.fuel.2021.122119

    Article  CAS  Google Scholar 

  22. Villoria-del-Álamo B, Rojas-Buzo S, García-García P, Corma A (2021) Zr-MOF-808 as catalyst for amide esterification. Chem Eur J 27(14):4588–4598. https://doi.org/10.1002/chem.202003752

    Article  CAS  PubMed  Google Scholar 

  23. Ma X, Liu F, Helian Y, Li C, Wu Z, Li H, Chu H, Wang Y, Wang Y, Lu W, Guo M, Yu M, Zhou S (2021) Current application of MOFs based heterogeneous catalysts in catalyzing transesterification/esterification for biodiesel production: a review. Energy Convers Manag 229:113760. https://doi.org/10.1016/j.enconman.2020.113760

    Article  CAS  Google Scholar 

  24. Saravanan K, Tyagi B, Bajaj HC (2012) Sulfated zirconia: an efficient solid acid catalyst for esterification of myristic acid with short chain alcohols. Catal Sci Technol 2(12):2512–2520. https://doi.org/10.1039/C2CY20462B

    Article  CAS  Google Scholar 

  25. Raia RZ, da Silva LS, Marcucci SMP, Arroyo PA (2017) Biodiesel production from Jatropha curcas L. oil by simultaneous esterification and transesterification using sulphated zirconia. Catal Today 289(Supplement C):105–114. https://doi.org/10.1016/j.cattod.2016.09.013

    Article  CAS  Google Scholar 

  26. Aguzín FL, Martínez ML, Beltramone AR, Padró CL, Okulik NB (2021) Esterification of succinic acid using sulfated zirconia supported on SBA-15. Chem Eng Technol 44(7):1185–1194. https://doi.org/10.1002/ceat.202000333

    Article  CAS  Google Scholar 

  27. Costa AA, Braga PRS, de Macedo JL, Dias JA, Dias SCL (2012) Structural effects of WO3 incorporation on USY zeolite and application to free fatty acids esterification. Microporous Mesoporous Mater 147(1):142–148. https://doi.org/10.1016/j.micromeso.2011.06.008

    Article  CAS  Google Scholar 

  28. Vieira SS, Magriotis ZM, Santos NAV, Saczk AA, Hori CE, Arroyo PA (2013) Biodiesel production by free fatty acid esterification using lanthanum (La3+) and HZSM-5 based catalysts. Bioresour Technol 133:248–255. https://doi.org/10.1016/j.biortech.2013.01.107

    Article  CAS  PubMed  Google Scholar 

  29. Doyle AM, Albayati TM, Abbas AS, Alismaeel ZT (2016) Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin. Renew Energy 97:19–23. https://doi.org/10.1016/j.renene.2016.05.067

    Article  CAS  Google Scholar 

  30. Kerstens D, Smeyers B, Van Waeyenberg J, Zhang Q, Yu J, Sels BF (2020) State of the art and perspectives of hierarchical zeolites: practical overview of synthesis methods and use in catalysis. Adv Mater 32(44):2004690. https://doi.org/10.1002/adma.202004690

    Article  CAS  Google Scholar 

  31. Mowla O, Kennedy E, Stockenhuber M (2019) Mass transfer and kinetic study on BEA zeolite-catalysed oil hydroesterification. Renew Energy 135:417–425. https://doi.org/10.1016/j.renene.2018.12.012

    Article  CAS  Google Scholar 

  32. Degnan TF (2003) The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries. J Catal 216(1):32–46. https://doi.org/10.1016/S0021-9517(02)00105-7

    Article  CAS  Google Scholar 

  33. Chung K-H, Chang D-R, Park B-G (2008) Removal of free fatty acid in waste frying oil by esterification with methanol on zeolite catalysts. Bioresour Technol 99(16):7438–7443. https://doi.org/10.1016/j.biortech.2008.02.031

    Article  CAS  PubMed  Google Scholar 

  34. Chung K-H, Park B-G (2009) Esterification of oleic acid in soybean oil on zeolite catalysts with different acidity. J Ind Eng Chem 15(3):388–392. https://doi.org/10.1016/j.jiec.2008.11.012

    Article  CAS  Google Scholar 

  35. Prinsen P, Luque R, González-Arellano C (2018) Zeolite catalyzed palmitic acid esterification. Microporous Mesoporous Mater 262:133–139. https://doi.org/10.1016/j.micromeso.2017.11.029

    Article  CAS  Google Scholar 

  36. Gomes GJ, Dal Pozzo DM, Zalazar MF, Costa MB, Arroyo PA, Bittencourt PRS (2019) Oleic acid esterification catalyzed by zeolite Y-model of the biomass conversion. Top Catal 62(12–16):874–883. https://doi.org/10.1007/s11244-019-01172-3

    Article  CAS  Google Scholar 

  37. Gomes GJ, Costa MB, Bittencourt PRS, Zalazar MF, Arroyo PA (2021) Catalytic improvement of biomass conversion: effect of adding mesoporosity on MOR zeolite for esterification with oleic acid. Renew Energy 178:1–12. https://doi.org/10.1016/j.renene.2021.06.030

    Article  CAS  Google Scholar 

  38. Arca HA, Gomes GCC, Mota CJA (2014) Solid solvents: activation parameters for the rearrangement of cyclopropylcarbinyl bromide on mordenite zeolite. New J Chem 38(7):2760–2762. https://doi.org/10.1039/C4NJ00287C

    Article  CAS  Google Scholar 

  39. Arca HA, Mota CJA (2018) Rearrangement of cyclopropylcarbinyl chloride over protonic zeolites: formation of carbocations and behavior as solid solvents. Top Catal 61(7):616–622. https://doi.org/10.1007/s11244-018-0911-8

    Article  CAS  Google Scholar 

  40. Ozorio LP, Henrique FJS, Comerford JW, North M, Mota CJA (2021) Zeolite-mediated production of cyclic organic carbonates: reaction of CO2 with styrene oxide on zeolite Y impregnated with metal halides. React Chem Eng 6(4):672–678. https://doi.org/10.1039/D1RE00036E

    Article  CAS  Google Scholar 

  41. Sarazen ML, Iglesia E (2018) Effects of charge, size, and shape of transition states, bound intermediates, and confining voids in reactions of alkenes on solid acids. ChemCatChem 10(18):4028–4037. https://doi.org/10.1002/cctc.201800401

    Article  CAS  Google Scholar 

  42. Grifoni E, Piccini G, Lercher JA, Glezakou V-A, Rousseau R, Parrinello M (2021) Confinement effects and acid strength in zeolites. Nat Commun 12(1):2630. https://doi.org/10.1038/s41467-021-22936-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Van Speybroeck V, Hemelsoet K, Joos L, Waroquier M, Bell RG, Catlow CRA (2015) Advances in theory and their application within the field of zeolite chemistry. Chem Soc Rev 44(20):7044–7111. https://doi.org/10.1039/C5CS00029G

    Article  PubMed  Google Scholar 

  44. Ma S, Liu Z-P (2022) The role of zeolite framework in zeolite stability and catalysis from recent atomic simulation. Top Catal 65(1):59–68. https://doi.org/10.1007/s11244-021-01473-6

    Article  CAS  Google Scholar 

  45. Zalazar MF, Paredes EN, Romero Ojeda GD, Cabral ND, Peruchena N (2018) Study of confinement and catalysis effects of the reaction of methylation of benzene by methanol in H-beta and H-ZSM-5 zeolites by topological analysis of electron density. J Phys Chem C 122(6):3350–3362. https://doi.org/10.1021/acs.jpcc.7b10297

    Article  CAS  Google Scholar 

  46. Zalazar MF, Cabral ND, Romero Ojeda GD, Alegre CIA, Peruchena NM (2018) Confinement effects in protonation reactions catalyzed by zeolites with large void structures. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.8b07357

    Article  Google Scholar 

  47. Mounssef B Jr, de Alcântara Morais SF, de Lima Batista AP, de Lima LW, Braga AAC (2021) DFT study of H2 adsorption at a Cu-SSZ-13 zeolite: a cluster approach. Phys Chem Chem Phys 23(16):9980–9990. https://doi.org/10.1039/D1CP00422K

    Article  Google Scholar 

  48. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319. https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  49. de Boer JH, Lippens BC, Linsen BG, Broekhoff JCP, van den Heuvel A, Osinga TJ (1966) Thet-curve of multimolecular N2-adsorption. J Colloid Interface Sci 21(4):405–414. https://doi.org/10.1016/0095-8522(66)90006-7

    Article  Google Scholar 

  50. Gomes GJ, Zalazar MF, Lindino CA, Scremin FR, Bittencourt PRS, Costa MB, Peruchena NM (2017) Adsorption of acetic acid and methanol on H-Beta zeolite: an experimental and theoretical study. Microporous Mesoporous Mater 252:17–28. https://doi.org/10.1016/j.micromeso.2017.06.008

    Article  CAS  Google Scholar 

  51. Gomes GJ, Zalazar MF, Arroyo PA, Scremin FR, Costa MB, Bittencourt PRS, Lindino CA, Peruchena NM (2019) Molecular-level understanding of the rate-determining step in esterification reactions catalyzed by H-ZSM-5 zeolite. An experimental and theoretical study. ChemistrySelect 4(11):3031–3041. https://doi.org/10.1002/slct.201900689

    Article  CAS  Google Scholar 

  52. Maseras F, Morokuma K (1995) IMOMM: a new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J Comput Chem 16(9):1170–1179. https://doi.org/10.1002/jcc.540160911

    Article  CAS  Google Scholar 

  53. Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li H-B, Ding L, Morokuma K (2015) The ONIOM method and its applications. Chem Rev 115(12):5678–5796. https://doi.org/10.1021/cr5004419

    Article  CAS  PubMed  Google Scholar 

  54. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski G, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09. revision A, 01 edn. Gaussian Inc, Wallingford

    Google Scholar 

  55. Stewart JJP (2008) Application of the PM6 method to modeling the solid state. J Mol Model 14(6):499. https://doi.org/10.1007/s00894-008-0299-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13(12):1173–1213. https://doi.org/10.1007/s00894-007-0233-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1):215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  58. Kesharwani MK, Brauer B, Martin JML (2015) Frequency and zero-point vibrational energy scale factors for double-hybrid density functionals (and other selected methods): can anharmonic force fields be avoided? J Phys Chem A 119(9):1701–1714. https://doi.org/10.1021/jp508422u

    Article  CAS  PubMed  Google Scholar 

  59. Bhan A, Gounder R, Macht J, Iglesia E (2008) Entropy considerations in monomolecular cracking of alkanes on acidic zeolites. J Catal 253(1):221–224. https://doi.org/10.1016/j.jcat.2007.11.003

    Article  CAS  Google Scholar 

  60. Herrmann S, Iglesia E (2017) Elementary steps in acetone condensation reactions catalyzed by aluminosilicates with diverse void structures. J Catal 346:134–153. https://doi.org/10.1016/j.jcat.2016.12.011

    Article  CAS  Google Scholar 

  61. Matthias Thommes KK, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069

    Article  Google Scholar 

  62. Lago CD, Decolatti HP, Tonutti LG, Dalla Costa BO, Querini CA (2018) Gas phase glycerol dehydration over H-ZSM-5 zeolite modified by alkaline treatment with Na2CO3. J Catal 366:16–27. https://doi.org/10.1016/j.jcat.2018.07.036

    Article  CAS  Google Scholar 

  63. Silva LSd, Araki CA, Marcucci SMP, Silva VLdSTd, Arroyo PA (2019) Desilication of ZSM-5 and ZSM-12 Zeolites with different crystal sizes: effect on acidity and mesoporous initiation. Mater Res 22:e20180872. https://doi.org/10.1590/1980-5373-MR-2018-0872

    Article  Google Scholar 

  64. Zhang D, Shi L, Wang Y, Chen F, Yao J, Li X, Ni Y, Zhu W, Liu Z (2018) Effect of mass-transfer control on HY zeolites for dimethoxymethane carbonylation to methyl methoxyacetate. Catal Today 316:114–121. https://doi.org/10.1016/j.cattod.2018.02.004

    Article  CAS  Google Scholar 

  65. Karge HG, Dondur V (1990) Investigation of the distribution of acidity in zeolites by temperature-programmed desorption of probe molecules. I. Dealuminated mordenites. J Phys Chem 94(2):765–772. https://doi.org/10.1021/j100365a047

    Article  CAS  Google Scholar 

  66. Camiloti AM, Jahn SL, Velasco ND, Moura LF, Cardoso D (1999) Acidity of Beta zeolite determined by TPD of ammonia and ethylbenzene disproportionation. Appl Catal A: Gen 182(1):107–113. https://doi.org/10.1016/S0926-860X(98)00418-9

    Article  CAS  Google Scholar 

  67. de Oliveira CM, Castagnari Willimann Pimenta JL, de Oliveira CM, Arroyo PA (2020) Green diesel production by solvent-free deoxygenation of oleic acid over nickel phosphide bifunctional catalysts: effect of the support. Fuel 281:118719. https://doi.org/10.1016/j.fuel.2020.118719

    Article  CAS  Google Scholar 

  68. Palčić A, Valtchev V (2020) Analysis and control of acid sites in zeolites. Appl Catal A: Gen 606:117795. https://doi.org/10.1016/j.apcata.2020.117795

    Article  CAS  Google Scholar 

  69. Lónyi F, Valyon J (2001) On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite. Microporous Mesoporous Mater 47(2):293–301. https://doi.org/10.1016/S1387-1811(01)00389-4

    Article  Google Scholar 

  70. Paul G, Bisio C, Braschi I, Cossi M, Gatti G, Gianotti E, Marchese L (2018) Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chem Soc Rev 47(15):5684–5739. https://doi.org/10.1039/C7CS00358G

    Article  CAS  PubMed  Google Scholar 

  71. Yu Z, Zheng A, Wang Q, Chen L, Xu J, Amoureux J-P, Deng F (2010) Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field. Angew Chem Int Ed 49(46):8657–8661. https://doi.org/10.1002/anie.201004007

    Article  CAS  Google Scholar 

  72. Bedard J, Chiang H, Bhan A (2012) Kinetics and mechanism of acetic acid esterification with ethanol on zeolites. J Catal 290:210–219. https://doi.org/10.1016/j.jcat.2012.03.020

    Article  CAS  Google Scholar 

  73. Corma A, Garcia H, Iborra S, Primo J (1989) Modified faujasite zeolites as catalysts in organic reactions: esterification of carboxylic acids in the presence of HY zeolites. J Catal 120(1):78–87. https://doi.org/10.1016/0021-9517(89)90252-2b

    Article  CAS  Google Scholar 

  74. Fernandes DR, Rocha AS, Mai EF, Mota CJA, Teixeira da Silva V (2012) Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Appl Catal, A 425–426:199–204. https://doi.org/10.1016/j.apcata.2012.03.020

    Article  CAS  Google Scholar 

  75. Newsam JM, Treacy MMJ, Koetsier WT, Gruyter CBd (1988) Structural characterization of zeolite beta. Proc R Soc Lond A Math Phys Sci 420(1859):375

    CAS  Google Scholar 

  76. Sahu P, Sakthivel A (2021) Zeolite-β based molecular sieves: a potential catalyst for esterification of biomass derived model compound levulinic acid. Mater Sci Energy Technol 4:307–316. https://doi.org/10.1016/j.mset.2021.08.007

    Article  CAS  Google Scholar 

  77. Corma A, Martínez A, Arroyo PA, Monteiro JLF, Sousa-Aguiar EF (1996) Isobutane/2-butene alkylation on zeolite beta: influence of post-synthesis treatments. Appl Catal A: Gen 142(1):139–150. https://doi.org/10.1016/0926-860X(96)00014-2

    Article  CAS  Google Scholar 

  78. Huang J, Jiang Y, Marthala VRR, Thomas B, Romanova E, Hunger M (2008) Characterization and acidic properties of aluminum-exchanged zeolites X and Y. J Phys Chem C 112(10):3811–3818. https://doi.org/10.1021/jp7103616

    Article  CAS  Google Scholar 

  79. Mezari B, Magusin PCMM, Almutairi SMT, Pidko EA, Hensen EJM (2021) Nature of enhanced Brønsted acidity induced by extraframework aluminum in an ultrastabilized faujasite zeolite: an in situ NMR study. J Phys Chem C 125(17):9050–9059. https://doi.org/10.1021/acs.jpcc.1c00356

    Article  CAS  Google Scholar 

  80. Pereira MM, Santos FM, Silva AV, Batalha N, Ferreira J, da Silva HF, Esteves PM, Louis B (2021) Insights into the role of framework and nonframework aluminum in the protolytic reaction of carbon-carbon and tertiary carbon-hydrogen bonds of isobutane. J Phys Chem C 125(21):11636–11647. https://doi.org/10.1021/acs.jpcc.1c01989

    Article  CAS  Google Scholar 

  81. Doyle AM, Alismaeel ZT, Albayati TM, Abbas AS (2017) High purity FAU-type zeolite catalysts from shale rock for biodiesel production. Fuel 199:394–402. https://doi.org/10.1016/j.fuel.2017.02.098

    Article  CAS  Google Scholar 

  82. Khan Z, Javed F, Shamair Z, Hafeez A, Fazal T, Aslam A, Zimmerman WB, Rehman F (2021) Current developments in esterification reaction: a review on process and parameters. J Ind Eng Chem 103:80–101. https://doi.org/10.1016/j.jiec.2021.07.018

    Article  CAS  Google Scholar 

  83. Resende RF, Vieira SS, Santos NAV, Fernandes A, Ribeiro MF, Magriotis ZM (2020) Effect of the amount of SO42/La2O3 on HZSM-5 activity for esterification reaction. Catal Today 344:150–157. https://doi.org/10.1016/j.cattod.2018.11.072

    Article  CAS  Google Scholar 

  84. Jones AJ, Zones SI, Iglesia E (2014) Implications of transition state confinement within small voids for acid catalysis. J Phys Chem C 118(31):17787–17800. https://doi.org/10.1021/jp5050095

    Article  CAS  Google Scholar 

  85. Kokotailo GT, Lawton SL, Olson DH, Meier WM (1978) Structure of synthetic zeolite ZSM-5. Nature 272(5652):437–438. https://doi.org/10.1038/272437a0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank financial support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil. To Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and to Universidad Nacional del Nordeste (Grant 18V002-SGCyT-UNNE) of Argentine. To LATI/UEM by NH3-TPD and physiosorption N2 analyzes. To Dra. S. B. C. Pergher for the XRF and 27Al MAS/NMR analyzes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to María Fernanda Zalazar or Pedro Augusto Arroyo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, G.J., Zalazar, M.F. & Arroyo, P.A. New Insights into the Effect of the Zeolites Framework Topology on the Esterification Reactions: A Comparative Study from Experiments and Theoretical Calculations. Top Catal 65, 871–886 (2022). https://doi.org/10.1007/s11244-022-01606-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01606-5

Keywords

Navigation