Skip to main content

Advertisement

Log in

Iron Oxide Nanostructures for the Reduction of Bicarbonate to Solar Fuels

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this study, iron(III) oxide with different sizes and morphologies were synthesized, characterized, and compared for their photocatalytic efficiency in the reduction of bicarbonate to formic acid. The four different Fe2O3 species selected for comparison were micron- and nano-particulate Fe2O3, goethite (α-FeOOH), and Fe2O3 wires. Within the set of four morphologies, we found that Fe2O3 wires possessed a significantly greater surface area. Consequently, this high-surface area wire morphology yielded the highest apparent quantum efficiency (AQE) of 5.59 ± 0.2%. When the photocatalytic efficiency of Fe2O3 was compared to commercial P25 TiO2, it was found that the AQE of Fe2O3 wires was three times greater than P25 TiO2. This work presents the first study of Fe2O3 structures in the photo-reduction of bicarbonate to formate, yielding ultra-high photon conversion efficiency to a value-added product.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Fuss S, Reuter WH, Szolgayova J, Obersteiner M (2013) Optimal mitigation strategies with negative emission technologies and carbon sinks under uncertainty. Clim Change 118:73–87

    Article  CAS  Google Scholar 

  2. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  CAS  PubMed  Google Scholar 

  3. Lewis N, Nocera D (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 103:15729–15735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Olah GA, Goeppert A, Surya Prakash GK (2011) Beyond oil and gas: the methanol economy, 2nd edn. Wiley, Somerset

    Google Scholar 

  5. Olah GA, Goeppert A, Surya Prakash GK (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74:487–498

    Article  CAS  PubMed  Google Scholar 

  6. Olah GA, Surya Prakash GK, Goeppert A (2011) Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc 133:12881–12898

    Article  CAS  PubMed  Google Scholar 

  7. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  PubMed  Google Scholar 

  8. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638

    Article  CAS  Google Scholar 

  9. Zhou X, Yang H, Wang C, Mao X, Wang Y, Yang Y, Liu G (2010) Visible light induced photocatalytic degradation of rhodamine B on one-dimensional iron oxide particles. J Phys Chem C 114:17051–17061

    Article  CAS  Google Scholar 

  10. Mishra M, Chun DM (2015) α-Fe2O3 as a photocatalytic material: a review. Appl Catal A 498:126–141

    Article  CAS  Google Scholar 

  11. Li X, Lin H, Chen X, Niu H, Liu J, Zhang T, Qu F (2016) Dendritic α-Fe2O3/TiO2 nanocomposites with improved visible light photocatalytic activity. Phys Chem Chem Phys 18:9176–9185

    Article  CAS  PubMed  Google Scholar 

  12. Cesar I, Kay A, Martinez JAG, Gratzel M (2006) Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. J Am Chem Soc 128:4582–4583

    Article  CAS  PubMed  Google Scholar 

  13. Ohmori T, Takahashi H, Mametsuka H, Suzuki E (2000) Photocatalytic oxygen evolution on α-Fe2O3 film using Fe3+ as a sacrificial oxidizing agent. Phys Chem Chem Phys 2:3519–3522

    Article  CAS  Google Scholar 

  14. Gou X, Wang G, Park J, Liu H, Yang J (2008) Monodisperse hematite porous nanospheres: synthesis, characterization, and applications for gas sensors. Nanotechnology 19:125606–125613

    Article  CAS  PubMed  Google Scholar 

  15. Zhou H, Wong SS (2008) A facile and mild synthesis of 1-D ZnO, CuO, and alpha-Fe2O3 nanostructures and nanostructured arrays. ACS Nano 2:944–958

    Article  CAS  PubMed  Google Scholar 

  16. Leland JK, Bard AJ (1987) Photochemistry of colloidal semiconducting iron oxide polymorphs. J Phys Chem 91:5076–5083

    Article  CAS  Google Scholar 

  17. Dieckmann R (1993) Point defects and transport in haematite (Fe2O3). Philos Mag A 68:725–745

    Article  CAS  Google Scholar 

  18. Jahagirdar AA, Ahmed MNZ, Donappa N, Nagabhushana H, Nagabhushana BM (2014) Photocatalytic degradation of rhodamine B using nanocrystalline α-Fe2O3. J Mater Environ Sci 5:1426–1433

    CAS  Google Scholar 

  19. Wei Q, Zhang Z, Li Z, Zhou Q, Zhu Y (2008) Enhanced photocatalytic activity of porous α-Fe2O3 films prepared by rapid thermal oxidation. J Phys D 41:202002–202006

    Article  CAS  Google Scholar 

  20. Xie J, Zhou Z, Lian Y, Hao Y, Li P, Wei Y (2015) Synthesis of α-Fe2O3/ZnO composites for photocatalytic degradation of pentachlorophenol under UV-Vis light irradiation. Ceram Int 41:2622–2625

    Article  CAS  Google Scholar 

  21. Sun W, Meng Q, Jing L, Liu D, Cao Y (2013) Facile synthesis of surface-modified nanosized α-Fe2O3 as efficient visible photocatalysts and mechanism insight. J Phys Chem C 117:1358–1365

    Article  CAS  Google Scholar 

  22. Kennedy JH, Frese KWJ (1978) Photooxidation of water at α-Fe2O3 electrodes. Electrochem Soc 125:709–714

    Article  CAS  Google Scholar 

  23. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  24. Huang Y, Ding D, Zhu M, Meng W, Huang Y, Geng F, Li J, Lin J, Tang C, Lei Z, Zhang Z, Zhi C (2015) Facile synthesis of α-Fe2O3 nanodisk with superior photocatalytic performance and mechanism insight. Sci Technol Adv Mater 16:1–12

    Article  CAS  Google Scholar 

  25. Hardee KL, Bard AJ (1976) Semiconductor electrodes V. The application of chemically vapor deposited iron oxide films to photosensitized electrolysis. J Electrochem Soc 123:1024–1026

    Article  CAS  Google Scholar 

  26. Zhang X, Li H, Wang S, Fan FR, Bard AJ (2014) Improvement of hematite as photocatalyst by doping with tantalum. J Phys Chem C 118:16842–16850

    Article  CAS  Google Scholar 

  27. Liu H, Wexler D, Wang G (2009) One-pot facile synthesis of iron oxide nanowires as high capacity anode materials for lithium ion batteries. J Alloys Compd 487:L24–L27

    Article  CAS  Google Scholar 

  28. Maji SK, Mukherjee N, Mondal A, Adhikary B (2012) Synthesis, characterization and photocatalytic activity of α-Fe2O3 nanoparticles. Polyhedron 33:145–149

    Article  CAS  Google Scholar 

  29. Khedr MH, Halim KSA, Soliman NK (2009) Synthesis and photocatalytic activity of nano-sized iron oxides. Mater Lett 63:598–601

    Article  CAS  Google Scholar 

  30. Lee SC, Lintang HO, Yuliati L (2017) High photocatalytic activity of Fe2O3/TiO2 nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid. J Nanotechnol 8:915–926

    CAS  Google Scholar 

  31. Bi D, Xu Y (2011) Improved photocatalytic activity of WO3 through clustered Fe2O3 for organic degradation in the presence of H2O2. Langmuir 27:9359–9366

    Article  CAS  PubMed  Google Scholar 

  32. Hassena H (2016) Photocatalytic degradation of methylene blue by using Al2O3/Fe2O3 nano composite under visible light. Mod Chem Appl 4:1–5

    Article  CAS  Google Scholar 

  33. Wang JC, Zhang L, Fang WX, Ren J, Li YY, Yao HC, Wang JS, Li ZJ (2015) Enhanced photoreduction CO2 activity over direct Z-scheme α-Fe2O3/Cu2O heterostructures under visible light irradiation. ACS Appl Mater Interfaces 7:8631–8639

    Article  CAS  PubMed  Google Scholar 

  34. Fang YM, Sun JJ, Wu AH, Su XL, Chen GN (2009) Catalytic electrogenerated chemiluminescence and nitrate reduction at CdS nanotubes modified glassy carbon electrode. Langmuir 25:555–560

    Article  CAS  PubMed  Google Scholar 

  35. Leonard DP, Pan H, Heagy MD (2015) Photocatalzyed reduction of bicarbonate to formate: effect of ZnS crystal structure and positive hole scavenger. ACS Appl Mater Interfaces 7:24543–24549

    Article  CAS  PubMed  Google Scholar 

  36. Chen S, Wang LW (2012) Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem Mater 24:3659–3666

    Article  CAS  Google Scholar 

  37. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge NSF award # IIA-1301346 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Heagy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The authors dedicate this article in memoriam to Dr. George Andrew Olah for his many inspirational contributions to chemistry and his scientific leadership bequeathed on a global scale to future generations. The advent of his more recently published books such as, Beyond Oil and Gas: The Methanol Economy, is largely responsible for the inspiration and findings reported in this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1191 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Martindale, K.R. & Heagy, M.D. Iron Oxide Nanostructures for the Reduction of Bicarbonate to Solar Fuels. Top Catal 61, 601–609 (2018). https://doi.org/10.1007/s11244-018-0959-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0959-5

Keywords

Navigation