Skip to main content

Activation and Chemisorption of Hydrogen on Aluminum Clusters

  • Chapter
Physics and Chemistry of Small Clusters

Abstract

We present results from theoretical and experimental investigations of the chemical (H2 activation) and electronic properties (ionization potentials) of aluminum clusters. The chemisorption of H2 on aluminum clusters exhibits a remarkable sensitivity to the number of metal atoms in the cluster. Al6 is the smallest cluster for which chemisorption of H2 is observed experimentally and for which a stable dissociately chemisorbed state for H2 is predicted. For clusters containing more than 6 atoms, the reactivity decreases rapidly with increasing cluster size. For the bare aluminum clusters, theoretical predictions and experimental measurements of ionization thresholds are in good agreement. Using the reactive Al6 cluster as model, we discuss how electronic factors influence H2 dissociative chemisorption on metals. We find that while charge transfer from the cluster to the H2 antibonding orbital is important, the activation barrier is dominated by repulsive interactions between the H2 and the cluster. The charge state of the cluster (anion, neutral or cation) has only a small effect on the activation barrier, which suggests that similar size selectivity might be expected for charged and neutral clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For H2 chemisorption on transition metal clusters see (a) R. L. Whetten, D. M. Cox, D. J. Trevor, and A. Kaldor, Phys. Rev. Lett. 54, 1494 (1985).

    Article  ADS  Google Scholar 

  2. S. C. Richtsmeier, E. K. Parks, K. Liu, G. Pobo, and S. J. Riley, J. Chem. Phys. 82, 3659 (1985).

    Article  ADS  Google Scholar 

  3. M. D. Morse, M. E. Geusic, J. R. Heath, and R. E. Smalley, J. Chem. Phys. 83, 2293 (1985).

    Article  ADS  Google Scholar 

  4. D. M. Cox, R. L. Whetten, M. R. Zakin, D. J. Trevor, K. C. Reichmann, and A. Kaldor, AIP Conference Proceedings No. 146, Adv. in Laser Science-I, Nov. 1985, Eds. W. C. Stwalley and M. Lapp, AIP, New York (1986).

    Google Scholar 

  5. M. E. Geusic, M. D. Morse, and R. E. Smalley, J. Chem. Phys. 82, 590 (1985).

    Article  ADS  Google Scholar 

  6. R. L. Whetten, M. R. Zakin, D. M. Cox, D. J. Trevor and A. Kaldor, J. Chem. Phys. 85, 1697 (1986).

    Article  ADS  Google Scholar 

  7. D. M. Cox, R. L. Whetten, D. J. Trevor, and A. Kaldor, to be published.

    Google Scholar 

  8. T. H. Upton, Phys. Rev. Lett. 56, 2168 (1986).

    Article  ADS  Google Scholar 

  9. For example see (a) T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley, J. Chem. Phys. 74, 6511 (1981).

    Article  ADS  Google Scholar 

  10. D. L. Michalopoulos, M. E. Guesic, S. G. Hansen, D. E. Powers, and R. E. Smalley, J. Phys. Chem. 86, 2556 (1982).

    Article  Google Scholar 

  11. V. E. Bondybey, J. Phys. Chem. 86, 3396 (1982).

    Article  Google Scholar 

  12. E. A. Rohlfing, D. M. Cox and A. Kaldor, Chem. Phys. Lett. 99, 161 (1983).

    Article  ADS  Google Scholar 

  13. A. Rohlfing, D. M. Cox, and A. Kaldor, J. Phys. Chem. 88, 4497. (1984).

    Article  Google Scholar 

  14. C. E. Moore, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), NSRDS-NBS 35 (1971).

    Google Scholar 

  15. E. A. Rohlfing, D. M. Cox, A. Kaldor and K. H. Johnson, J. Chem. Phys. 81, 3846 (1984).

    Article  ADS  Google Scholar 

  16. R. L. Whetten, D. M. Cox, D. J. Trevor, and A. Kaldor, J. Phys. Chem. 89, 566 (1985).

    Article  Google Scholar 

  17. M. E. Geusic, M. D. Morse, S. C. O’Brien, and R. E. Smalley, Rev. Sci. Instr. 56, 2123 (1985).

    Article  ADS  Google Scholar 

  18. D. M. Cox, K. C. Reichmann, D. J. Trevor, and A. Kaldor, submitted for publication.

    Google Scholar 

  19. Clusters containing an odd (as well as an even) number of D atoms are produced when deuterium is added to the carrier gas because deuterium is also decomposed in the vaporization region producing the highly reactive atomic species. Such effects have been observed on iron clusters (E. K. Parks, K. Liu, S. C. Richtsmeier, L. G. Pobo, and S. J. Riley, J. Chem. Phys. 82, 5470 (1985).

    Article  ADS  Google Scholar 

  20. H. Partridge and C. W. Bauschlicher, J. Chem. Phys. 84, 6507 (1986).

    Article  ADS  Google Scholar 

  21. B. K. Rao, P. Jena, and M. Manninen, Phys. Rev. Lett. 53, 2300 (1984).

    Article  ADS  Google Scholar 

  22. C. W. Bauschlicher, Chem. Phys. Lett. 117, 33 (1985).

    Article  ADS  Google Scholar 

  23. see for example (a) T. H. Upton and W. A. Goddard III, Phys. Rev. Lett. 42, 472 (1979).

    Article  ADS  Google Scholar 

  24. S. G. Louie, Phys. Rev. Lett. 42, 476 (1979).

    Article  ADS  Google Scholar 

  25. C. Umrigar and J. W. Wilkins, Phys. Rev. Lett. 54, 1551 (1985).

    Article  ADS  Google Scholar 

  26. P. Nordlander, S. Holloway, and J. K. Norskov, Surf. Sci. 136, 59 (1984).

    Article  ADS  Google Scholar 

  27. H. Nakatsuji and M. Hada, J. Amer. Chem. Soc. 107, 8264 (1985).

    Article  Google Scholar 

  28. J. Garcia-Prieto, M. E. Ruiz, and O. Novaro, J. Amer. Chem. Soc. 107, 5635 (1985).

    Article  Google Scholar 

  29. H. O. Beckmann and J. Koutecky, Surf. Sci. 120, 127 (1982).

    Article  ADS  Google Scholar 

  30. P. Cremaschi and J. L. Whitten, Phys. Rev, Lett. 46, 1242 (1981).

    Article  ADS  Google Scholar 

  31. T. H. Upton, J. Chem. Phys., submitted, and references within.

    Google Scholar 

  32. W. Knight, K. Clemenger, W de Heer, W. Saunders, M.-Y. Chou, and M. Cohen, Phys. Rev. Lett. 52, 2141 (1984).

    Article  ADS  Google Scholar 

  33. C. F. Melius, Chem. Phys. Lett. 39, 287 (1976).

    Article  ADS  Google Scholar 

  34. J. H. McCreery and G. Wolken, Jr., J. Chem. Phys. 64, 2845 (1976).

    Article  ADS  Google Scholar 

  35. V. I. Avdeev, T. H. Upton, W. H. Weinberg, and W. A. Goddard III, Surf. Sci. 95, 391 (1980).

    Article  ADS  Google Scholar 

  36. A. Gelb and M. J. Cardillo, Surf. Sci. 64, 197 (1977).

    Article  ADS  Google Scholar 

  37. J. Harris and S. Andersson, Phys. Rev. Lett. 55, 1583 (1985).

    Article  ADS  Google Scholar 

  38. T. H. Upton, J. Amer. Chem. Soc. 106, 1561 (1984).

    Article  Google Scholar 

  39. A. K. Rappé and T. H. Upton, J. Amer. Chem. Soc. 107, 1206 (1985).

    Article  Google Scholar 

  40. P. E. M. Siegbahn, M. R. A. Blomberg, and C. W. Bauschlicher, J. Chem. Phys. 81, 2103 (1984).

    Article  ADS  Google Scholar 

  41. S. Holloway and J. W. Gadzuk, J. Chem. Phys. 82, 5203 (1985).

    Article  ADS  Google Scholar 

  42. J. W. Gadzuk and S. Holloway, Chem. Phys. Lett. 114, 314 (1985).

    Article  ADS  Google Scholar 

  43. D. K. Bhattacharyya, J.-T. Lin, and T. F. George, Surf. Sci. 116, 423 (1982).

    Article  ADS  Google Scholar 

  44. E. Shustorovich, J. Phys. Chem. 87, 14 (1983).

    Article  Google Scholar 

  45. E. Shustorovich and R. C. Baetzold, Science 227, 876 (1985).

    Article  ADS  Google Scholar 

  46. E. Shustorovich, R. C. Baetzold, and E. L. Muetterties, J. Phys. Chem. 87, 1100 (1983).

    Article  Google Scholar 

  47. C.-Y. Lee and A. E. DePristo, J. Chem. Phys. 84, 485 (1986);

    Article  ADS  Google Scholar 

  48. C.-Y. Lee and A. E. DePristo, J. Chem. Phys. 85, 4161 (1985).

    Article  ADS  Google Scholar 

  49. this conclusion is the result of simple geometric arguments that are specific to nd orbitals. It is possible that less severe criteria are appropriate for other orbital symmetries or types.

    Google Scholar 

  50. A. K. Rappé and T. H. Upton, J. Chem. Phys. 85, 4400 (1986).

    Article  ADS  Google Scholar 

  51. E. Shustorovich, Surf. Sci. 150, L115 (1985).

    Article  ADS  Google Scholar 

  52. in fact the occupation is best described as (λ1a1 2- λ2b2 2)(αβ-βα) where λ 1 > λ 2.

    Google Scholar 

  53. obtained by following the ‘steepest descent’ path from the transition state the initial and final states.

    Google Scholar 

  54. because of the large number of calculations required for this study, the basis set employed was more limited than in the study of Aln and AlnH2 (see refs. 4,12). The Al basis was reduced to (3s,2p) and the H basis to (2s), with all other procedures remaining the same. This basis will have a limited ability to describe the polarization effects present in this system.

    Google Scholar 

  55. J. M. Alford, F. D. Weiss, R. T. Laaksonen, and R. E. Smalley, J. Phys. Chem. 90, 4480 (1986).

    Article  Google Scholar 

  56. P. J. Brucat, C. L. Pettiette, S. Yang, L.-S. Zheng, M. J. Craycraft, and R. E. Smalley, J. Chem. Phys. 85, 4747 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Upton, T.H., Cox, D.M., Kaldor, A. (1987). Activation and Chemisorption of Hydrogen on Aluminum Clusters. In: Jena, P., Rao, B.K., Khanna, S.N. (eds) Physics and Chemistry of Small Clusters. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0357-3_100

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0357-3_100

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0359-7

  • Online ISBN: 978-1-4757-0357-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics