Skip to main content
Log in

Identification and Quantification of Copper Sites in Zeolites by Electron Paramagnetic Resonance Spectroscopy

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Recent quantitative electron paramagnetic resonance spectroscopy (EPR) data on different copper species present in copper exchanged CHA zeolites are presented and put into context with the literature on other copper zeolites. Results presented herein were obtained using ex situ and in situ EPR on copper ion exchanged into a CHA zeolite with Si/Al = 14 ± 1 to obtain Cu/Al = 0.46 ± 0.02. The results shed light on the identity of different copper species present after activation in air. Since the EPR signal is quantifiable, the content of the different EPR active species has been elucidated and Cu2+ in 2Al positions in the 6-membered rings (6mr) of the CHA structure has been characterized. Some copper species are found not to give an EPR signal at ambient or high temperatures. Fortunately, treatments with different gasses under in situ conditions are able to trigger an EPR signal and thus reveal information about the reactivity and the quantity of some of the otherwise EPR silent species. In this way the [Cu–OH]+ species in copper substituted low-Al zeolites has been indirectly observed and quantified. EPR active Cu2+ species have been followed under reduction and oxidation with gas mixtures relevant for the selective catalytic reduction of NO with NH3 (NH3-SCR) revealing that all Cu2+ in 6mr are easily reduced and oxidized at 200 °C. Furthermore, a stable [Cu–NO3]+ species is identified in Cu-CHA after exposure to NO and O2, but is not stable in 2Al 6mr sites of the CHA structure under the applied conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gao F, Kwak JH, Szanyi J, Peden CHF (2013) Current understanding of Cu-exchanged chabazite molecular sieves for use as commercial diesel engine DeNOx catalysts. Top Catal 56:1441–1459

    Article  CAS  Google Scholar 

  2. Beale AM, Gao F, Lezcano-Gonzalez I et al (2015) Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem Soc Rev 44:7371–7405

    Article  CAS  Google Scholar 

  3. Deka U, Lezcano-Gonzalez I, Weckhuysen BM, Beale AM (2013) Local environment and nature of Cu active sites in zeolite-based catalysts for the selective catalytic reduction of NOx. ACS Catal 3:413–427

    Article  CAS  Google Scholar 

  4. EU Commission (2011) Commission Regulation (EU) No 582/2011 of 25 May 2011. Off J Eur Union L 167: 1

  5. Meier WM, Olson DH, Baerlocher C (1996) Atlas of zeolite structure types. Zeolites 17:1–230

    Article  CAS  Google Scholar 

  6. Iwamoto M, Hamada H (1991) Removal of nitrogen monoxide from exhaust gases through novel catalytic processes. Catal Today 10:57–71

    Article  CAS  Google Scholar 

  7. Kwak JH, Tonkyn RG, Kim DH et al (2010) Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. J Catal 275:187–190

    Article  CAS  Google Scholar 

  8. Janssens TVW, Falsig H, Lundegaard LF et al (2015) A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia. ACS Catal 5:2832–2845

    Article  CAS  Google Scholar 

  9. Paolucci C, Verma A, Bates S et al (2014) isolation of the copper redox steps in the standard selective catalytic reduction on Cu-SSZ-13. Angew Chem Int Ed 53:11828–11833

    Article  CAS  Google Scholar 

  10. Gao F, Walter ED, Kollar M et al (2014) Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions. J Catal 319:1–14

    Article  CAS  Google Scholar 

  11. Giordanino F, Vennestrøm PNR, Lundegaard LF et al (2013) Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios. Dalton Trans 42:12741–12761

    Article  CAS  Google Scholar 

  12. Godiksen A, Stappen FN, Vennestrøm PNR et al (2014) Coordination environment of copper sites in Cu-CHA zeolite investigated by electron paramagnetic resonance. J Phys Chem C 118:23126–23138

    Article  CAS  Google Scholar 

  13. Andersen CW, Bremholm M, Vennestrøm PNR et al (2014) Location of Cu 2+ in CHA zeolite investigated by X-ray diffraction using the Rietveld/maximum entropy method. IUCrJ 1:382–386

    Article  CAS  Google Scholar 

  14. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55

    Article  CAS  Google Scholar 

  15. Addison AW, Yokoi H (1977) Spectroscopic and redox properties of pseudotetrahedral copper (II) complexes. Their relationship to copper proteins. Inorg Chem 16:1341–1349

    Article  Google Scholar 

  16. Peisach J, Blumberg WE (1974) Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins. Arch Biochem Biophys 165:691–708

    Article  CAS  Google Scholar 

  17. Sakaguchi U, Addison AW (1979) Spectroscopic and redox studies of some copper(II) Complexes with bio- mimetic donor atoms : implications for protein copper centres. J Chem Soc Dalton Trans 4:600–608

    Article  Google Scholar 

  18. Carl PJ, Larsen SC (2000) EPR study of copper-exchanged zeolites: effects of correlated g- and A-strain, Si/Al ratio, and parent zeolite. J Phys Chem B 104:6568–6575

    Article  CAS  Google Scholar 

  19. Carl PJ, Larsen SC (1999) Variable-temperature electron paramagnetic resonance studies of copper-exchanged zeolites. J Catal 182:208–218

    Article  CAS  Google Scholar 

  20. Öpik U, Pryce MHL (1957) Jahn–Teller effect. I. A survey of the static problem. Proc R Soc Lond A 238:425–447

    Article  Google Scholar 

  21. Jahn HA, Teller E (1937) Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proc R Soc Lond A 161:220–235

    Article  CAS  Google Scholar 

  22. Bendix J (2004) Ligfield. Compr Coord Chem 2:673–676

    CAS  Google Scholar 

  23. Piligkos S, Bendix J, Weihe H et al (2008) A ligand-field study of the ground spin-state magnetic anisotropy in a family of hexanuclear Mn(III) single-molecule magnets. Dalton Trans 17:2277–2284

    Article  Google Scholar 

  24. Broser I, Schulz M (1969) Elektronenspinresonanz an Kupferdozierten ZnO-Einkristallen. Solid State Commun 7:651–655

    Article  CAS  Google Scholar 

  25. Narayana M, Kevan L (1983) Detection of a new trigonal bipyramidal copper species in Cu–CaX zeolite by electron spin resonance and electron spin echo modulation analysis. J Chem Phys 78:3573–3578

    Article  CAS  Google Scholar 

  26. Vanelderen P, Vancauwenbergh J, Sels BF, Schoonheydt RA (2013) Coordination chemistry and reactivity of copper in zeolites. Coord Chem Rev 257:483–494

    Article  CAS  Google Scholar 

  27. Dědeček J, Kaucký D, Wichterlová B (2000) Co2+ ion siting in pentasil-containing zeolites, part 3. Co2+ ion sites and their occupation in ZSM-5: a VIS diffuse reflectance spectroscopy study. Micropor Mesopor Mater 35–36:483–494

    Google Scholar 

  28. Conesa JC, Soria J (1979) Electron spin resonance of copper-exchanged Y zeolites. J Chem Soc Faraday Trans 1(75):291–293

    Google Scholar 

  29. Nicula A, Stamires D, Turkevich J (1965) Paramagnetic resonance absorption of copper ions in porous crystals. J Chem Phys 42:3684–3692

    Article  CAS  Google Scholar 

  30. Kucherov A, Gerlock J (1994) In situ determination by esr of the oxidation state of copper in Cu-ZSM-5 in flowing He and O2 up to 500 °C. J Phys Chem 98:4892–4894

    Article  CAS  Google Scholar 

  31. Kucherov AV, Slinkin AA (1989) Change of Cu(II) cation coordination in H-ZSM-5 channels upon the sorption of n-hexane and xenon: ESR spectroscopic evidence. J Phys Chem 93:864–867

    Article  CAS  Google Scholar 

  32. Gao F, Walter ED, Karp EM et al (2013) Structure–activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies. J Catal 300:20–29

    Article  CAS  Google Scholar 

  33. Larsen SC, Aylor A, Bell AT, Reimer JA (1994) Electron paramagnetic resonance studies of copper ion-exchanged ZSM-5. J Phys Chem 98:11533–11540

    Article  CAS  Google Scholar 

  34. Anderson MW, Kevan L (1987) Study of Cu2+-doped zeolite NaH-ZSM-5 by electron spin resonance and electron spin echo modutation spectroscopies. J Phys Chem 91:4174–4179

    Article  CAS  Google Scholar 

  35. Kucherov A, Gerlock J, Jen H, Shelef M (1995) In situ esr monitoring of the coordination and oxidation states of copper in Cu-ZSM-5 up to 500 °C in flowing gas mixtures: 1. Interaction with He, O2, NO, NO2 and H2O. Zeolites 15:9–14

    Article  CAS  Google Scholar 

  36. Pierloot K, Delabie A, Groothaert MH, Schoonheydt RA (2001) A reinterpretation of the EPR spectra of Cu(II) in zeolites A, Y and ZK4, based on ab initio cluster model calculations. Phys Chem Chem Phys 3:2174–2183

    Article  CAS  Google Scholar 

  37. Vanelderen P, Vancauwenbergh J, Tsai M-L et al (2014) Spectroscopy and redox chemistry of copper in mordenite. ChemPhysChem 15:91–99

    Article  CAS  Google Scholar 

  38. Oliva C, Selli E, Ponti A et al (1997) FTIR and EPR characterisation of copper-exchanged mordenites and beta zeolites. J Chem Soc Faraday Trans 93:2603–2608

    Article  CAS  Google Scholar 

  39. Borfecchia E, Lomachenko KA, Giordanino F et al (2015) Revisiting the nature of Cu sites in the activated Cu-SSZ-13 catalyst for SCR reaction. Chem Sci 6:548–563

    Article  CAS  Google Scholar 

  40. Shwan S, Skoglundh M, Lundegaard LF et al (2014) Solid-state ion-exchange of copper into zeolites facilitated by ammonia at low temperature. ACS Catal 5:16–19

    Article  Google Scholar 

  41. Yu J-S, Kevan L (1990) Temperature dependence of copper(II) migration and formation of new copper(II) species during catalytic propylene oxidation on copper(II)-exchanged Y zeolite and comparison with X zeolite. J Phys Chem 94:7612–7620

    Article  CAS  Google Scholar 

  42. Seo SM, Lim WT, Seff K (2012) Crystallographic verification that copper(II) coordinates to four of the oxygen atoms of zeolite 6-rings. Two single-crystal structures of fully dehydrated, largely Cu2+ exchanged zeolite Y (FAU, Si/Al = 1.56). J Phys Chem C 116:963–974

    Article  CAS  Google Scholar 

  43. Deka U, Eilertsen EA, Emerich H et al (2012) Confirmation of isolated Cu2+ ions in SSZ-13 zeolite as active sites in NH3-selective catalytic reduction. J Phys Chem C 116:4809–4818

    Article  CAS  Google Scholar 

  44. Groothaert MH, Pierloot K, Delabie A, Schoonheydt RA (2003) Identification of Cu(II) coordination structures in Cu-ZSM-5, based on a DFT/ab initio assignment of the EPR spectra. Phys Chem Chem Phys 5:2135–2144

    Article  CAS  Google Scholar 

  45. De Tavernier S, Schoonheydt RA (1991) Coordination of Cu2+ in synthetic mordenites. Zeolites 11:155–163

    Article  Google Scholar 

  46. Kucherov AV, Slinkin AA, Kondrat’ev DA et al (1985) Cu2+-cation location and reactivity in mordenite and ZSM-5: esr-study. Zeolites 5:320–324

    Article  CAS  Google Scholar 

  47. Bates SA, Verma AA, Paolucci C et al (2014) Identification of the active Cu site in standard selective catalytic reduction with ammonia on Cu-SSZ-13. J Catal 312:87–97

    Article  CAS  Google Scholar 

  48. Göltl F, Bulo RE, Sautet P (2013) What makes copper-exchanged SSZ-13 zeolite efficient at cleaning car exhaust gases? J Phys Chem Lett 4:2244–2249

    Article  Google Scholar 

  49. Göltl F, Sautet P, Hermans I (2016) The impact of finite temperature on the coordination of Cu cations in the zeolite SSZ-13. Catal Today 267:41–46

    Article  Google Scholar 

  50. Delabie A, Pierloot K, Groothaert MH et al (2001) The siting of Cu(II) in mordenite: a theoretical spectroscopic study. Phys Chem Chem Phys 4:134–145

    Article  Google Scholar 

  51. Moreno-González M, Hueso B, Boronat M et al (2015) Ammonia-containing species formed in Cu-chabazite as per in situ EPR, solid-state NMR, and DFT calculations. J Phys Chem Lett 6:1011–1017

    Article  Google Scholar 

  52. Packet D, Dehertogh W, Schoonheydt RA (1985) Spectroscopy of Cu(II) coordinated to lattice oxygens in zeolites. In: Drzaj B, Hocevar S, Pevojnik S (eds) Zeolites: synthesis, structure, technology, and application. Elsevier, Amsterdam, pp 351–358

    Google Scholar 

  53. Schoonheydt RA (1993) Transition metal ions in zeolites: siting and energetics of Cu2+. Catal Rev 35:129–168

    Article  CAS  Google Scholar 

  54. LoJacono M, Fierro G, Dragone R et al (1997) Zeolite chemistry of CuZSM-5 revisited. J Phys Chem B 5647:1979–1984

    Article  Google Scholar 

  55. Conesa JC, Soria J (1978) Electron spin resonance of undetected copper(II) ions in Y zeolite. J Phys Chem 82:1847–1850

    Article  CAS  Google Scholar 

  56. Valyon J, Hall WK (1993) On the preparation and properties of CuZSM-5 catalysts for NO decomposition. Catal Lett 19:109–119

    Article  CAS  Google Scholar 

  57. Verma AA, Bates SA, Anggara T et al (2014) NO oxidation: a probe reaction on Cu-SSZ-13. J Catal 312:179–190

    Article  CAS  Google Scholar 

  58. Gao F, Wang Y, Washton NM et al (2015) Effects of alkali and alkaline earth cocations on the activity and hydrothermal stability of Cu/SSZ-13 NH 3 -SCR catalysts. ACS Catal 5:6780–6791

    Article  CAS  Google Scholar 

  59. Günter T, Carvalho H, Doronkin DE et al (2015) Structural snapshots of the SCR reaction mechanism on Cu-SSZ-13. Chem Commun 51:9227–9230

    Article  Google Scholar 

  60. Kieger S, Delahay G, Coq B, Neveu B (1999) Selective catalytic reduction of nitric oxide by ammonia over Cu-FAU catalysts in oxygen-rich atmosphere. J Catal 183:267–280

    Article  CAS  Google Scholar 

  61. Kwak JH, Lee JH, Burton SD et al (2013) A common intermediate for N2 formation in enzymes and zeolites: side-on Cu-nitrosyl complexes. Angew Chem Int Ed Engl 52:9985–9989

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Danish Independent Research Council DFF—1335-00175. The Carlsberg Foundation is acknowledged for supporting the upgrade of the EPR instrument at DTU Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Mossin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godiksen, A., Vennestrøm, P.N.R., Rasmussen, S.B. et al. Identification and Quantification of Copper Sites in Zeolites by Electron Paramagnetic Resonance Spectroscopy. Top Catal 60, 13–29 (2017). https://doi.org/10.1007/s11244-016-0731-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0731-7

Keywords

Navigation