Skip to main content
Log in

Deactivation Aspects of Methane Oxidation Catalysts Based on Palladium and ZSM-5

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Catalytic methane oxidation is used in exhaust gas after treatment to reduce methane emissions in stationary combustion processes as well as in natural gas vehicles. Pd/zeolite catalysts provide higher activity than the commonly used Pd/Al2O3, but suffer from rapid deactivation under reaction conditions and in the presence of steam. This work presents a detailed study of deactivation of 1 wt% Pd/H–ZSM-5 catalyst in reaction conditions in dry and wet feed including characterization of both the active phase and the support. Initially well-dispersed PdO particles are not stable and sinter immediately after the exposure to the reaction mixture even in dry feed and stabilize at lower dispersion level. Despite the reasonable methane oxidation activity exhibited by the large particles, the initial PdO particles could potentially provide a 40 °C lower methane oxidation temperature. In the presence of water in the feed at moderate temperature (450 °C), support degradation governs the deactivation of the catalyst, which is evidenced by a significant decrease in BET surface area and generation of extra-framework aluminium species. These results suggest that active and stable catalysts could be obtained by careful choice and design of the support material with the aim to guarantee high dispersion of PdO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Choudhary TV, Banerjee S, Choudhary VR (2002) Catalysts for combustion of methane and lower alkanes. Appl Catal A 234:1–23

    Article  CAS  Google Scholar 

  2. Gelin P, Primet M (2002) Complete oxidation of methane at low temperature over noble metal based catalysts: a review. Appl Catal B 39:1–37

    Article  CAS  Google Scholar 

  3. Gonzalez-Velasco JR, Botas JA, Gonzalez-Marcos JA, Gutierrez-Ortiz MA (1997) Influence of water and hydrocarbon processed in feedstream on the three-way behaviour of platinum–alumina catalysts. Appl Catal B 12:61–79

    Article  CAS  Google Scholar 

  4. Lampert JK, Kazi MS, Farrauto RJ (1997) Palladium catalyst performance for methane emissions abatement from lean burn natural gas vehicles. Appl Catal B 14:211–223

    Article  CAS  Google Scholar 

  5. Lee JH, Trimm DL (1995) Catalytic combustion of methane. Fuel Process Technol 42:339–359

    Article  CAS  Google Scholar 

  6. Kalantar Neyestanaki A, Kumar N, Lindfors LE (1995) Catalytic combustion of propane and natural gas over Cu and Pd modified ZSM zeolite catalysts. Appl Catal B 7:95–111

    Article  CAS  Google Scholar 

  7. Li Y, Armor JN (1994) Catalytic combustion of methane over palladium exchanged zeolites. Appl Catal B 3:275–282

    Article  CAS  Google Scholar 

  8. M’Ramadj O, Li D, Wang X, Zhang B, Lu G (2007) Role of acidity of catalysts on methane combustion over Pd/ZSM-5. Catal Commun 8:880–884

    Article  Google Scholar 

  9. Maeda H, Kinoshita Y, Reddy KR, Muto K, Komai S, Katada N, Niwa M (1997) Activity of palladium loaded on zeolites in the combustion of methane. Appl Catal A 163:59–69

    Article  CAS  Google Scholar 

  10. Montes de Correa C, Villa AL (1996) Combustion of methane over palladium ZSM-5 and mordenite catalysts. Appl Catal B 10:313–323

    Article  CAS  Google Scholar 

  11. Okumura K, Matsumoto S, Nishiaki N, Niwa M (2003) Support effect of zeolite on methane combustion activity of palladium. Appl Catal B 40:151–159

    Article  CAS  Google Scholar 

  12. Okumura K, Shinohara E, Niwa M (2006) Pd loaded on high silica beta support active for the total oxidation of diluted methane in the presence of water vapor. Catal Today 117:577–583

    Article  CAS  Google Scholar 

  13. Park JH, Kim B, Shin CH, Seo G, Kim SH, Hong SB (2009) Methane combustion over Pd catalysts loaded on medium and large pore zeolites. Top Catal 52:27–34

    Article  Google Scholar 

  14. Shi C, Yang L, Cai J (2006) Cerium promoted Pd/HZSM-5 catalyst for methane combustion. Fuel 86:106–112

    Article  Google Scholar 

  15. Shi C, Yang L, Wang Z, He Z, He X, Cai J, Li G, Wang X (2003) Promotion effects of ZrO2 on the Pd/HZSM-5 catalyst for low-temperature catalytic combustion of methane. Appl Catal A 243:379–388

    Article  CAS  Google Scholar 

  16. Zhang B, Wang X, M’Ramadj O, Li D, Zhang H, Lu G (2008) Effect of water on the performance of Pd–ZSM-5 catalysts for the combustion of methane. J Nat Gas Chem 17:87–92

    Article  CAS  Google Scholar 

  17. Homeyer ST, Sachtler WMH (1989) Elementary steps in the formation of highly dispersed palladium in NaY: I. Pd ion coordination and migration. J Catal 117:91–101

    Article  CAS  Google Scholar 

  18. Zhang Z, Mestl G, Knözinger H, Sachtler WMH (1992) Effects of calcination program and rehydration on palladium dispersion in zeolites NaY and 5A. Appl Catal A 89:155–168

    Article  CAS  Google Scholar 

  19. Pommier B, Gelin P (1999) On the nature of Pd species formed upon exchange of H–ZSM-5 with Pd(NH3) 2+4 and calcination in O2. Phys Chem Chem Phys 1:1665–1672

    Article  CAS  Google Scholar 

  20. Lamberti C, van Bokhoven J (2016) X-Ray absorption and emission spectroscopy for catalysis. In: van Bokhoven J, Lamberti C (eds) X-ray absorption and X-ray emission spectroscopy: theory and applications. Wiley, Chichester

    Google Scholar 

  21. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12(4):537–541

    Article  CAS  Google Scholar 

  22. Zecevic J, van der Eerden MJ, Friedrich H, de Jongh PE, de Jong KP (2013) Heterogeneities of the nanostructure of Platinum/Zeolite Y catalysts revealed by electron tomography. ACS Nano 7:3698–3705

    Article  CAS  Google Scholar 

  23. Domingos D, Simplicio LMT, Estrela GS, dos Prazeres MAG, Brandao ST (2007) Catalytic combustion of methane over PdO–CeO2/Al2O3 and PdO–CeO2/ZrO2 catalysts. Stud Surf Sci Catal 167:7–12

    Article  CAS  Google Scholar 

  24. Jablonska M, Krol A, Kukulska-Zajac E, Tarach K, Chmielarz L, Gora-Marek K (2014) Zeolite Y modified with palladium as effective catalyst for selective catalytic oxidation of ammonia to nitrogen. J Catal 316:36–46

    Article  CAS  Google Scholar 

  25. Pinar AB, Verel R, Perez-Pariente J, van Bokhoven JA (2014) Direct evidence of the effect of synthesis conditions on aluminum siting in zeolite ferrierite: a 27Al MQ MAS NMR study. Micropor Mesopor Mat 193:111–114

    Article  CAS  Google Scholar 

  26. Grunwaldt JD, van Vegten N, Baiker A (2007) Chem Commun 44:4635–4637

    Article  Google Scholar 

  27. Matam SK, Aguirre MH, Weidenkaff A, Ferri D (2010) Revisiting the problem of active sites for methane combustion on Pd/Al2O3 by Operando XANES in a lab-scale fixed-bed reactor. J Phys Chem C 114:9439–9443

    Article  CAS  Google Scholar 

  28. Yan Z, Ma D, Zhuang J, Liu X, Han X, Bao X, Chang F, Xu L, Liu Z (2003) On the acid-dealumination of USY zeolite: a solid state NMR investigation. J Mol Catal A Chem 194:153–167

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Paul Scherrer Institute for financial support and for granting access to SLS, Dr. F. Krumeich (ETH Zurich) for the electron microscopy images, Dr. R. Verel (ETH Zurich) for assistance with NMR measurements and Dr. M. Nachtegaal (PSI) for his support with XAS measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oliver Kröcher or Jeroen A. van Bokhoven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, A.W., Ferri, D., Tarik, M. et al. Deactivation Aspects of Methane Oxidation Catalysts Based on Palladium and ZSM-5. Top Catal 60, 123–130 (2017). https://doi.org/10.1007/s11244-016-0724-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0724-6

Keywords

Navigation