Skip to main content
Log in

Effects of Support on Performance of Methanol Oxidation over Palladium-Only Catalysts

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Two kinds of palladium-only catalysts loaded mesoporous beta zeolite (Pd/beta) and alumina (Pd/Al2O3) have been successfully prepared by the impregnation method and characterized using nitrogen adsorption–desorption, XRD, TEM, H2-TPR, CO2-TPD, and XPS. Catalytic activities of the catalysts for methanol oxidation were investigated with CO coexisting. The results showed that the different support determines the metal-support interaction, thus affecting the catalytic behavior. For Pd/beta, the strong basicity and better reductive ability are beneficial for improving the reaction rate of catalytic oxidation for methanol. And the palladium species with a higher oxidation state is responsible for excellent catalytic conversion of methanol and CO resistance. Compared to Pd/Al2O3, the T50, T90, and ΔT on Pd/beta catalyst are 145 °C, 160 °C, and 15 °C, respectively, in the case of CO present, which decreased by 45 °C, 91 °C, and 46 °C. So beta zeolite, as a new type of catalyst support material, has a good application prospect to meet the practical needs for emission purification of methanol-gasoline vehicles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bi, Y. S., & Lv, G. X. (2003). Research progress on low temperature catalytic oxidation of carbon monoxide [J]. Journal of Molecular Catalysis (China), 17(4), 313–320.

    CAS  Google Scholar 

  • Bi, Y. S., & Zhao, X. H. (2009). Comparison of CO oxidation performance on various supported Pd catalysts. Rare Metal Materials and Engineering, 38(5), 870–875.

    CAS  Google Scholar 

  • Enrico, C., Stijn, V. D., Micaela, B., & Alessandro, D. M. (2018). Catalytic application of ferrierite nanocrystals in vapour-phase dehydration of methanol to dimethyl ether. Applied Catalysis B: Environmental, 10, 1–48.

    Google Scholar 

  • Gabriella, G., Chong, Y., et al. (2017). Acido-basicity of lanthana/alumina catalysts and their activity in ethanol conversion. Applied Catalysis B: Environmental, 200(1), 458–468.

    Google Scholar 

  • Goel, S., Zones, S. I., & Iglesia, E. (2014). Encapsulation of metal clusters within MFI via interzeolite transformations and direct hydrothermal syntheses and catalytic consequences of their confinement. Journal of the American Chemical Society, 136(43), 15280–15290.

    CAS  Google Scholar 

  • Guo, X., Mao, D., Lu, G., et al. (2011). The influence of La doping on the catalytic behavior of cu/ZrO2 for methanol synthesis from CO2 hydrogenation. Journal of Molecular Catalysis A: Chemical, 345(1), 60–68.

    CAS  Google Scholar 

  • Hu, L. X., Wang, L., Wang, F., et al. (2017). Catalytic oxidation of o-xylene over Pd/γ-Al2O3 catalysts. Acta Physico-Chimica Sinica, 33(8), 1681–1688.

    CAS  Google Scholar 

  • Hui, Z., Dong, Y., Jiang, P., et al. (2015). ZnAl2O4, as a novel high-surface-area ozonation catalyst: one-step green synthesis, catalytic performance and mechanism. Chemical Engineering Journal, 260, 623–630.

    Google Scholar 

  • Izabela, S., Katarzyna, S., Robert, W., Eric, M. G., & Maria, Z. (2012). CuxCryOz mixed oxide as a promising support for gold-the effect of Au loading method on the effectiveness in oxidation reactions. Catalysis Today, 187, 48–55.

    Google Scholar 

  • Jiang, Y. S., Lv, X. X., Guo, J., et al. (2017). Study on the synthesis of zeolite beta with hydrothermal method. Shandong Chemical Industry, 46(5), 8–9.

    Google Scholar 

  • Li, K., Wang, X., Zhou, Z., et al. (2007). Oxygen storage capacity of Pt-, Pd-, Rh/CeO2-based oxide catalyst. Journal of Rare Earths, 25(1), 6–10.

    Google Scholar 

  • Li, H. M., Zhou, J. F., Zhu, Q. C., et al. (2009). Investigation of the properties of CeO2-ZrO2-Al2O3 prepared by co-precipitation. Chemical Journal of Chinese Universities, 30(12), 2484–2486.

    CAS  Google Scholar 

  • Li Q R, Zhou X X, Zhao W P, Peng C L, Wu H X, Chen H R. (2019) Pt/Fe co-loaded mesoporous zeolite beta for CO oxidation with high catalytic activity and water resistance. RSC Advanced, (9):28089–28094.

  • Lia, C., & Fujimoto, K. (2015). Synthesis gas conversion to isobutane-rich hydrocarbons over a hybrid catalyst containing Beta zeolite – role of doped palladium and influence of the SiO2/Al2O3 ratio. Catalysis Science & Technology, 6, 1–10.

    Google Scholar 

  • Lippits, M. J., Nieuwenhuys, B. E., & Iwema, R. R. H. B. (2009). A comparative study of oxidation of methanol on gamma-Al2O3 supported group IB metal catalysts. Catalysis Today, 145(1), 27–33.

    CAS  Google Scholar 

  • Liu, X. S., Lu, J. Q., Qian, K., Huang, W. X., & Luo, M. F. (2009). A comparative study of formaldehyde and carbon monoxide complete oxidation on MnOx-CeO2 catalysts. Journal of Rare Earths, 27(3), 418–424.

    Google Scholar 

  • Luo, M. F., Hou, Z. Y., Yuan, X. X., et al. (1998). Characterization study of CeO2 supported Pd catalyst for low-temperature carbon monoxide oxidation. Catalysis Letters, 50(3–4), 205–209.

    CAS  Google Scholar 

  • Luo, Y. J., Xiao, Y. H., Cai, G. H., Zheng, Y., & Wei, K. M. (2012). A study of barium doped Pd/Al2O3-Ce0.3Zr0.7O2 catalyst for complete methanol oxidation [J]. Catalysis Communication, 27, 134–137.

    Google Scholar 

  • Melanie, J., Hazlett, M., & Moses-Debusk James, E. (2017). Kinetic and mechanistic study of bimetallic Pt-Pd/Al2O3 catalysts for CO and C3H6 oxidation. Applied Catalysis B: Environmental, 202(3), 404–417.

    Google Scholar 

  • Ming, Z., Long, C., Qin-gang, W., Xin, Z., Bo, Z., & Ke-zeng, Y. (2019). Effects of spark timing and methanol addition on combustion characteristics and emissions of dual-fuel engine fuelled with natural gas and methanol under lean-burn condition. Energy Conversion and Management, 181(1), 519–527.

    Google Scholar 

  • Norsic, C., Tatibouët, J. M., Catherine, B. D., & Elodie, F. (2016). Non thermal plasma assisted catalysis of methanol oxidation on Mn, Ce and Cu oxides supported on γ-Al2O3[J]. Chemical Engineering Journal, 304(15), 563–572.

    CAS  Google Scholar 

  • O’Brien, C. P., & Lee, I. C. (2017). The interaction of CO with PdCu hydrogen separation membranes: an operando infrared spectroscopy study. Catalysis Today, 9, 1–7.

    Google Scholar 

  • Pan, Y. B., Shen, X. C., Yao, L. B., Bentalib, A., & Peng, Z. M. (2018). Active sites in heterogeneous catalytic reaction on metal and metal oxide: theory and practice [J]. Catalysts, 8, 478–498.

    Google Scholar 

  • Pavlova, S. N., Sadykov, V. A., Bulgakov, N. N., et al. (1996). The influence of support on the low-temperature activity of Pd in the reaction of CO oxidation: 3. Kinetics and mechanism of the reaction. Journal of Catalysis, 161(2), 517–523.

    CAS  Google Scholar 

  • Polychronopoulou, K., Giannakopoulos, K., & Efstathiou, A. M. (2012). Tailoring MgO-based supported Rh catalysts for purification of gas streams from phenol. Applied Catalysis B: Environmental, 111(6), 360–375.

    Google Scholar 

  • Ren, Y., Huang, Z., & Jiang, D. (2006). Combustion characteristics of a compression-ignition engine fuelled with diesel–dimethoxy methane blends under various fuel injection advance angles. Applied Thermal Engineering, 26(4), 327–337.

    CAS  Google Scholar 

  • Roldán, R., Beale, A. M., Sánchez-Sánchez, M., et al. (2008). Effect of the impregnation order on the nature of metal particles of bi-functional Pt/Pd-supported zeolite Beta materials and on their catalytic activity for the hydroisomerization of alkanes. Journal of Catalysis, 254(1), 12–26.

    Google Scholar 

  • Sang, J. P., Inkwon, B., InSik, N., Cho, B. K., Seong, M. J., & Lee, J. H. (2012). Oxidation of formaldehyde over Pd/Beta catalyst. Chemical Engineering Journal, 195-196, 392–402.

    Google Scholar 

  • Scire, S., Crisafulli, C., Maggiore, R., Minico, S., & Galvagno, S. (1998). Effect of the acid–base properties of Pd–Ca/Al2O3 catalysts on the selective hydrogenation of phenol to cyclohexanone: FT-IR and TPD characterization. Applied Surface Science, 136, 311–320.

    CAS  Google Scholar 

  • Sedmak, G., Hočevar, S., & Levec, J. (2003). Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2−y. catalyst. Journal of Catalysis, 213(2), 135–142.

    CAS  Google Scholar 

  • Tatibougt, J. M. (1997). Methanol oxidation as a catalytic surface probe. Applied Catalysis A: General, 148, 213–252.

    Google Scholar 

  • Venezia, A. M., Liotta, L. F., Deganello, G., et al. (2001). Catalytic CO oxidation over pumice supported Pd–Ag catalysts. Applied Catalysis A: General, 211(2), 167–174.

    CAS  Google Scholar 

  • Wang, J. A., Aguilar-Rıos, G., & Wang, R. G. (1999). Inhibition of carbon monoxide on methanol oxidation over g-alumina supported Ag, Pd and Ag–Pd catalysts. Applied Surface Science, 147, 41–51.

    Google Scholar 

  • Wang, W., Jiang, Y. J., & Hunger, M. (2006). Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR. Catalysis Today, 113, 102–114.

    CAS  Google Scholar 

  • WangB, W. D., Wu, X. D., & Ran, R. (2011). Modification of Pd-CeO2 catalyst by different treatments: Effect on the structure and CO oxidation activity. Applied Surface Science, 257, 3878–3883.

    Google Scholar 

  • Wei, Y. J., Liu, S. H., Liu, F. J., Liu, J., Zhu, Z., & Li, G. (2009). Formaldehyde and methanol emissions from a methanol/gasoline-fueled spark-ignition (SI) engine. Energy & Fuels, 23(6), 3313–3318.

    CAS  Google Scholar 

  • Wojcieszak, R., GhazzalM, N., Gaigneaux, E. M., & Ruiz, P. (2014). Low temperature oxidation of methanol to methyl formate over Pd nanoparticles supported on γ-Fe2O3. Catalysis Science & Technology, 4, 738–745.

    CAS  Google Scholar 

  • Xiao, L. H. (2008). Catalytic combustion of methane over CeO-MO(M=La, Ca) solid solution promoted Pd/-Al2O3 catalysts. Acta Physico-Chimica Sinica, 24(11), 2108–2113.

    CAS  Google Scholar 

  • Yang, C., Dong, Q. N., Ren, J., et al. (2002). Studies on mechanism of methanol decomposition over Pd/CeO2 catalyst. Chemical Journal of Chinese Universities, 23(12), 2329–2331.

    CAS  Google Scholar 

  • Yang, C., Dong, Q. N., Ren, J., et al. (2004). In-situ IR study of adsorption and decomposition of methanol on γ-Al2O3, CeO2 and their supported Pd catalysts. Spectroscopy and Spectral Analysis, 24(7), 810–812.

    CAS  Google Scholar 

  • Zhang, C. B., He, H., & Tanaka, K. I. (2006). Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Applied Catalysis. B, Environmental, 65(1–2), 37–47.

    CAS  Google Scholar 

  • Zhang, X., Long, E., Li, Y., et al. (2009). The effect of CeO2, and BaO on Pd catalysts used for lean-burn natural gas vehicles. Journal of Molecular Catalysis A: Chemical, 308(1), 73–78.

    CAS  Google Scholar 

  • Zhang, G., Wang, D., Feng, P., et al. (2017). Synthesis of zeolite Beta containing ultra-small CoO particles for ethylbenzene oxidation. Chinese Journal of Catalysis, 38(7), 1207–1215.

    CAS  Google Scholar 

  • Zhang, X. Q., Zhan, J. B., Jing, Y., et al. (2018). Effects of modified-alumina on performance of methanol oxidation over only-palladium catalyst. Journal of the Chinese Society of Rare Earths, 36(1), 42–52.

    Google Scholar 

  • Zhou, Z. L., Ji, S. F., Yin, F. X., Lu, Z. X., & Li, C. Y. (2007). Preparation of Pd/CexZr1-xO2/SiO2 and its catalytic performance in methane combustion [J]. Journal of Fuel Chemistry and Technology, 35(5), 583–588.

    CAS  Google Scholar 

  • Zhu, B., & Wang, R. (1997). Study on catalysts for methanol fueled vehicle exhaust control. Influence of oxygen content on methanol deep oxidation over Pd/γ-Al2O3. Chinese Journal of Catalysis, 18(5), 414–417.

    CAS  Google Scholar 

  • Zhu, X., Shen, R., & Zhang, L. (2014). Catalytic oxidation of styrene to benzaldehyde over a copper Schiff-base/SBA-15 catalyst. Chinese Journal of Catalysis, 35(10), 1716–1726.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to xueqiao Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, x., Chen, X., Liu, Y. et al. Effects of Support on Performance of Methanol Oxidation over Palladium-Only Catalysts. Water Air Soil Pollut 231, 277 (2020). https://doi.org/10.1007/s11270-020-04656-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04656-1

Keywords

Navigation