Skip to main content

Advertisement

Log in

Oxygen Electrocatalysis on Dealloyed Pt Nanocatalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We review the fundamental principles, the preparation and catalytic performance of dealloyed Pt core–shell electrocatalysts for the electroreduction of molecular oxygen. This reaction is key to the efficiency of all fuel cell cathodes, as the oxygen electrocatalysis exhibits much larger kinetic overpotentials compared to typical fuel cell anode reactions. We discuss structural surface lattice strain in metal overlayers and show that they serve as models for nanostructured core–shell catalysts. We address preparation pathways with particular emphasis on the dealloying routes. Trends in reactivity of different dealloyed Pt core–shell catalysts are compared with a focus on the dealloyed Pt–Ni alloy system. Size effects are discussed. Practical catalytic performance data in automotive fuel cells and under automotive fuel cell conditions is provided and contrasted to other state-of-art catalyst concepts. This review concludes that dealloyed Pt core–shell cathode catalysts are currently the most attractive commercialization candidate for automotive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reprinted from “Electrocatalysis for fuel cells: a non and low Platinum approach” [60]—with permission of Springer. Remark: Graph is based on data presented in [48]

Fig. 3

Reprinted with permission from Ref. [40]—Copyright 2013 American Chemical Society

Fig. 4
Fig. 5

Reprinted from Ref. [46] (Top. Catal.), with permission of Springer. Remark: Graphs are based on data presented in Ref. [42]

Fig. 6

Reproduced with permission from Ref. [47]—published by The Royal Society of Chemistry

Fig. 7

Reprinted from Ref. [77] with permission of the Electrochemical Society

Similar content being viewed by others

References

  1. Bockris JOM, Khan SUM (1993) Surface electrochemistry—A molecular level approach, Chapter 5, Springer

  2. Voorspools K (2004) Sustainability of the future; rethinking the fundamentals of energy research. Renew Sustain Energy Rev 8:599–608

    Article  Google Scholar 

  3. Asif M, Muneer T (2007) Energy supply, its demand and security issues for developed and emerging economies. Renew Sustain Energy Rev 11:1388–1413

    Article  Google Scholar 

  4. Bockris JOM, Reddy AKN, Gamboa-Aldeco M (1998) Modern electrochemistry 2A: fundamentals of electrodics. Plenum US, New York

    Google Scholar 

  5. Hamann CH, Hamnett A, Vielstich W (1998) Electrochemistry. Wiley

  6. Schlögl R (2010) The role of chemistry in the energy challenge. ChemSusChem 3:209–222

    Article  Google Scholar 

  7. Wakihara M (2001) Recent developments in lithium ion batteries. Mate Sci Eng R Rep 33:109–134

    Article  Google Scholar 

  8. Kim JG et al (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322

    Article  CAS  Google Scholar 

  9. Weber A et al (2011) Redox flow batteries: a review. J Appl Electrochem 41:1137–1164

    Article  CAS  Google Scholar 

  10. Alotto P, Guarnieri M, Moro F (2014) Redox flow batteries for the storage of renewable energy: a review. Renew Sustain Energy Rev 29:325–335

    Article  CAS  Google Scholar 

  11. Carmo M, Fritz DL, Merge J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38:4901–4934

    Article  CAS  Google Scholar 

  12. Nishimura Y (2003) Hydrogen production by water electrolysis—research, development and application of hydrogen producution. Electrochemistry 71:278–282

    CAS  Google Scholar 

  13. Rossmeisl J et al (2012) Bifunctional anode catalysts for direct methanol fuel cells. Energy Environ Sci 5:8335–8342

    Article  CAS  Google Scholar 

  14. Strasser P (2008) Combinatorial optimization of ternary Pt alloy catalysts for the electrooxidation of methanol. J Comb Chem 10:216–224

    Article  CAS  Google Scholar 

  15. Erini N et al (2014) Ethanol electro-oxidation on Ternary Platinum–Rhodium–Tin nanocatalysts: insights in the atomic 3D structure of the active catalytic phase. ACS Catal 4:1859–1867

    Article  CAS  Google Scholar 

  16. Loukrakpam R et al (2014) Efficient C–C bond splitting on Pt monolayer and sub-monolayer catalysts during ethanol electro-oxidation: Pt layer strain and morphology effects. Phys Chem Chem Phys 16:18866–18876

    Article  CAS  Google Scholar 

  17. Erini N et al (2015) Comparative assessment of synthetic strategies toward active platinum–rhodium–tin electrocatalysts for efficient ethanol electro-oxidation. J Power Sources 294:299–304

    Article  CAS  Google Scholar 

  18. Erini N et al (2015) Exceptional activity of a Pt–Rh–Ni ternary nanostructured catalyst for the electrochemical oxidation of ethanol. ChemElectroChem 2:903–908

    Article  CAS  Google Scholar 

  19. Vuyyuru KR, Strasser P (2012) Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catal Today 195:144–154

    Article  CAS  Google Scholar 

  20. LeRoy RL (1983) Industrial water electrolysis—present and future. Int J Hydrogen Energy 8:401–417

    Article  CAS  Google Scholar 

  21. Hoare JP (1968) The electrochemistry of oxygen. Wiley, New York

    Google Scholar 

  22. Krischer K, Savinova ER (2008) Fundamentals of electrocatalysis in handbook of heterogeneous catalysis. Wiley, pp 1873–1905

  23. Nørskov JK et al (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892

    Article  Google Scholar 

  24. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51

    Article  CAS  Google Scholar 

  25. Stephens IEL, Bondarenko AS, Andersen UG, Rossmeisl J, Chorkendorff I (2012) Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ Sci 5:6744–6762

    Article  CAS  Google Scholar 

  26. Jiao Y, Zheng Y, Jaroniec MT, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086

    Article  CAS  Google Scholar 

  27. Evans UR (1968) Cathodic reduction of oxygen in fuel cells and corrosion cells. Nature 218:602–603

    Article  CAS  Google Scholar 

  28. Bing Y, Liu H, Zhang L, Ghosh D, Zhang J (2010) Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem Soc Rev 39:2184–2202

    Article  CAS  Google Scholar 

  29. Forgie R, Bugosh G, Neyerlin KC, Liu Z, Strasser P (2010) Bimetallic Ru electrocatalysts for the OER and electrolytic water splitting in acidic media. Electrochem Solid State Lett 13:B36

    Article  CAS  Google Scholar 

  30. Mette K et al (2012) Nanostructured manganese oxide supported on carbon nanotubes for electrocatalytic water splitting. ChemCatChem 4:851–862

    Article  CAS  Google Scholar 

  31. Neyerlin KC, Bugosh G, Forgie R, Liu Z, Strasser P (2009) Combinatorial study of high-surface-area binary and ternary electrocatalysts for the oxygen evolution reaction. J Electrochem Soc 156:B363–B369

    Article  CAS  Google Scholar 

  32. Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, Oxford

    Google Scholar 

  33. Nesselberger M et al (2011) The particle size effect on the oxygen reduction reaction activity of Pt catalysts: influence of electrolyte and relation to single crystal models. J Am Chem Soc 133:17428–17433

    Article  CAS  Google Scholar 

  34. Shao MH, Peles A, Shoemaker K (2011) Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett 11:3714–3719

    Article  CAS  Google Scholar 

  35. Perez-Alonso FJ et al (2012) The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angew Chem Int Ed 51:4641–4643

    Article  CAS  Google Scholar 

  36. Wang C et al (2009) Monodisperse Pt3Co nanoparticles as a catalyst for the oxygen reduction reaction: size-dependent activity. J Phys Chem C 113:19365–19368

    Article  CAS  Google Scholar 

  37. Koh S, Strasser P (2007) Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J Am Chem Soc 129:12624–12625

    Article  CAS  Google Scholar 

  38. Oezaslan M, Hasché F, Strasser P (2012) Oxygen electroreduction on PtCo3, PtCo and Pt3Co alloy nanoparticles for alkaline and acidic PEM fuel cells. J Electrochem Soc 159:B394–B405

    Article  CAS  Google Scholar 

  39. Oezaslan M, Hasché F, Strasser P (2012) PtCu3, PtCu and Pt3Cu alloy nanoparticle electrocatalysts for oxygen reduction reaction in alkaline and acidic media. J Electrochem Soc 159:B444–B454

    Article  CAS  Google Scholar 

  40. Oezaslan M, Hasché F, Strasser P (2013) Pt-based core–shell catalyst architectures for oxygen fuel cell electrodes. J Phys Chem Lett 4:3273–3291

    Article  CAS  Google Scholar 

  41. Heggen M, Oezaslan M, Houben L, Strasser P (2012) Formation and analysis of core–shell fine structures in Pt bimetallic nanoparticle fuel cell electrocatalysts. J Phys Chem C 116:19073–19083

    Article  CAS  Google Scholar 

  42. Gan L, Heggen M, O’Malley R, Theobald B, Strasser P (2013) Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Lett 13:1131–1138

    Article  CAS  Google Scholar 

  43. Snyder J, McCue I, Livi K, Erlebacher J (2012) Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction. J Am Chem Soc 134:8633–8645

    Article  CAS  Google Scholar 

  44. Oezaslan M, Heggen M, Strasser P (2011) Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale. J Am Chem Soc 134:514–524

    Article  Google Scholar 

  45. Oezaslan M, Strasser P (2011) Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell. J Power Sources 196:5240–5249

    Article  CAS  Google Scholar 

  46. Gan L, Cui C, Rudi S, Strasser P (2014) Core–shell and nanoporous particle architectures and their effect on the activity and stability of Pt ORR electrocatalysts. Top Catal 57:236–244

    Article  CAS  Google Scholar 

  47. Han BH et al (2015) Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy Environ Sci 8:258–266

    Article  CAS  Google Scholar 

  48. Strasser P et al (2010) Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem 2:454–460

    Article  CAS  Google Scholar 

  49. Abild-Pedersen F et al (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99:016105

    Article  CAS  Google Scholar 

  50. Wang SG et al (2011) Scaling relations applied to synthetic fuel production. Abstr Pap Am Chem Soc 242

  51. Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis—calculations and concepts. Adv Catal 45:71–129

    CAS  Google Scholar 

  52. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett 93:156801

    Article  CAS  Google Scholar 

  53. Yu C, Koh S, Leisch JE, Toney MF, Strasser P (2009) Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering (ASAXS). Faraday Discuss 140:283–296

    Article  Google Scholar 

  54. Kibler LA, El-Aziz AM, Hoyer R, Kolb DM (2005) Tuning reaction rates by lateral strain in a palladium monolayer. Angew Chem Int Ed 44:2080–2084

    Article  CAS  Google Scholar 

  55. Zhang J et al (2005) Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction. J Phys Chem B 109:22701–22704

    Article  CAS  Google Scholar 

  56. Zhang J, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135

    Article  CAS  Google Scholar 

  57. Zhang JL et al (2005) Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J Am Chem Soc 127:12480–12481

    Article  CAS  Google Scholar 

  58. Mavrikakis M, Hammer B, Norskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81:2819–2822

    Article  Google Scholar 

  59. Rossmeisl J, Karlberg GS, Jaramillo T, Norskov JK (2009) Steady state oxygen reduction and cyclic voltammetry. Faraday Discuss 140:337–346

    Article  Google Scholar 

  60. Gan L, Strasser P (2013) In: Shao M (ed) Electrocatalysis for fuel cells: a non and low platinum approach. Springer, London, pp 533–560

    Chapter  Google Scholar 

  61. Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128:8813–8819

    Article  CAS  Google Scholar 

  62. Stamenkovic VR et al (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247

    Article  CAS  Google Scholar 

  63. Lee MH, Do JS (2009) Kinetics of oxygen reduction reaction on Co-rich (core)-Pt-rich (shell)/C electrocatalysts. J Power Sources 188:353–358

    Article  CAS  Google Scholar 

  64. Wang C et al (2011) Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett 11:919–926

    Article  CAS  Google Scholar 

  65. Brankovic SR, Wang JX, Adžić RR (2001) Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci 474:L173–L179

    Article  CAS  Google Scholar 

  66. Wang JX et al (2009) Oxygen reduction on well-defined core–shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J Am Chem Soc 131:17298–17302

    Article  CAS  Google Scholar 

  67. Koh S, Toney MF, Strasser P (2007) Activity–stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR). Electrochim Acta 52:2765–2774

    Article  CAS  Google Scholar 

  68. Koh S, Yu C, Mani P, Srivastava R, Strasser P (2007) Activity of ordered and disordered Pt-Co alloy phases for the electroreduction of oxygen in catalysts with multiple coexisting phases. J Power Sources 172:50–56

    Article  CAS  Google Scholar 

  69. Liu Z, Koh S, Yu C, Strasser P (2007) Synthesis, de-alloying, and ORR electrocatalysis of PDDA-stabilized Cu-rich Pt alloy nanoparticles. J Electrochem Soc 154:B1192–B1199

    Article  CAS  Google Scholar 

  70. Mani P, Srivastava R, Strasser P (2008) Dealloyed Pt-Cu core–shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J Phys Chem C 112:2770–2778

    Article  CAS  Google Scholar 

  71. Koh S, Strasser P (2010) Dealloyed Pt nanoparticle fuel cell electrocatalysts: stability and aging study of catalyst powders, thin films, and inks. J Electrochem Soc 157:B585–B591

    Article  CAS  Google Scholar 

  72. Gan L, Heggen M, Rudi S, Strasser P (2012) Core–shell compositional fine structures of dealloyed PtxNi1-x nanoparticles and their impact on oxygen reduction catalysis. Nano Lett 12:5423–5430

    Article  CAS  Google Scholar 

  73. Kongkanand A, Wagner F (2013) Annual Merit Review DOE. http://www.hydrogen.energy.gov/pdfs/review13/fc087_kongkanand_2013_o.pdf. Washington, DC. Accessed Sept 2015

  74. Popov BN (2014) Annual Merit Review DOE Hydrogen and Fuel Cells and Vehicle Technologies Programs. http://www.hydrogen.energy.gov/pdfs/review14/fc088_popov_2014_o.pdf. Washington, DC. Accessed Sept 2015

  75. Steinbach A (2014) Annual Merit Review DOE Hydrogen and Fuel Cells and Vehicle Technologies Programs. http://www.hydrogen.energy.gov/pdfs/review14/fc104_steinbach_2014_o.pdf. Washington, DC. Accessed Sept 2015

  76. The US Department of Energy (DOE) (2012) E.E.a.R.E. http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf. Accessed Sept 2015

  77. Gröger O, Gasteiger HA, Suchsland JP (2015) Review—electromobility: batteries or fuel cells? J Electrochem Soc 162:A2605–A2622

    Article  Google Scholar 

  78. Hasche F, Oezaslan M, Strasser P (2012) Activity, structure and degradation of dealloyed PtNi3 nanoparticle electrocatalyst for the oxygen reduction reaction in PEMFC. J Electrochem Soc 159:B25–B34

    Article  CAS  Google Scholar 

  79. Wu J et al (2012) Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J Am Chem Soc 134:11880–11883

    Article  CAS  Google Scholar 

  80. Zhang J, Yang H, Fang J, Zou S (2010) Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett 10:638–644

    Article  CAS  Google Scholar 

  81. Wu JB, Gross A, Yang H (2011) Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. Nano Lett 11:798–802

    Article  CAS  Google Scholar 

  82. Huang X et al (2015) High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 348:1230–1234

    Article  CAS  Google Scholar 

  83. Chen C et al (2014) Highly crystalline multimetallic nanoframes with Three-dimensional electrocatalytic surfaces. Science 343:1339–1343

    Article  CAS  Google Scholar 

  84. Wagner FT, Yan SG, Yu PT (2009) Handbook of fuel cells - Fundamentals, technology, application, John Wiley & Sons Ltd, Chichester, p 250

  85. Koh S, Hahn N, Yu C, Strasser P (2008) Effects of composition and annealing conditions on catalytic activities of dealloyed Pt–Cu nanoparticle electrocatalysts for PEMFC. J Electrochem Soc 155:B1281–B1288

    Article  CAS  Google Scholar 

  86. Debe MK (2012) Nanostructured thin film electrocatalysts for PEM fuel cells—a tutorial on the fundamental characteristics and practical properties of NSTF catalysts. ECS Trans 45:47–68

    Article  CAS  Google Scholar 

  87. Cui C, Gan L, Heggen M, Rudi S, Strasser P (2013) Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat Mater 12:765–771

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) grants STR 596/4-1 (“Pt stability”) and STR 596/5-1 (“Shaped Pt bimetallics”). The authors acknowledges financial support by the Federal Ministry of Education and Science via the joint project “LoPlaKats” (Grant 03SF0527A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Strasser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kühl, S., Strasser, P. Oxygen Electrocatalysis on Dealloyed Pt Nanocatalysts. Top Catal 59, 1628–1637 (2016). https://doi.org/10.1007/s11244-016-0682-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0682-z

Keywords

Navigation