Skip to main content
Log in

Effect of Location and Distribution of Al Sites in ZSM-5 on the Formation of Cu-Oxo Clusters Active for Direct Conversion of Methane to Methanol

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A series of Cu/ZSM-5 materials were synthesized and tested for the selective oxidation of methane to methanol reaction in a three stage reaction. The efficiency of the catalysts is related to the ability of the zeolite framework to stabilize multinuclear Cu-oxo species, namely dicopper and tricopper oxo clusters. Spectroscopy characterization by EXAFS showed that the exchange with moderate Cu loadings led to preferential formation of trinuclear Cu complexes [Cu3(μ–O)3]2+ in HZSM-5. The concentration of Al pairs in ZSM-5 is found to limit the maximum concentration of multinuclear Cu-oxo species that can be formed. Above such maximum, inactive Cu species including Cu oxide nanoparticles are formed. Conversely, it was found that at low loadings the Cu speciation in Cu/ZSM-5 occurs as a mixture of Cu monomers and dimers. Furthermore, it was found that not only the structure of Cu-oxo clusters is relevant for the activation of methane, but also the local environment in which the cluster is embedded. Comparison of methane to Cu stoichiometries achieved for Cu/ZSM-5 and Cu/MOR systems containing the same type of active [Cu3(μ–O)3]2+ cluster shows that approximately 50 % of these clusters are inactive on ZSM-5. While MOR stabilizes the trinuclear clusters in highly constrained 8-MR side pockets, the possibility of ZSM-5 to stabilize part of these clusters in less constrained local environments might be the reason for a lower activity in methane oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Otsuka K, Wang Y (2001) Appl Catal A-Gen 222:145–161

    Article  CAS  Google Scholar 

  2. Periana RA, Taube DJ, Taube H, Evitt ER (1992) WO 92/14738

  3. Michalkiewicz B, Kalucki K, Sośnicki JG (2003) J Catal 215:14–19

    Article  CAS  Google Scholar 

  4. Smeets PJ, Groothaert MH, Schoonheydt RA (2005) Catal Today 110:303–309

    Article  CAS  Google Scholar 

  5. Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA (2005) J Am Chem Soc 127:1394–1395

    Article  CAS  Google Scholar 

  6. Groothaert MH, Lievens K, Leeman H, Weckhuysen BM, Schoonheydt RA (2003) J Catal 220:500–512

    Article  CAS  Google Scholar 

  7. Smeets PJ, Groothaert MH, Teeffelen RMV, Leeman H, Hensen EJM, Schoonheydt RA (2007) J Catal 245:358–368

    Article  CAS  Google Scholar 

  8. Woertink JS, Smeets PJ, Groothaert MH, Vance MA, Sels BF, Schoonheydt RA, Solomon EI (2009) Proc Natl Acad Sci U S A 106:18908–18913

    Article  CAS  Google Scholar 

  9. Smeets PJ, Hadt RG, Woertink JS, Vanelderen P, Schoonheydt RA, Sels BF, Solomon EI (2010) J Am Chem Soc 132:14736–14738

    Article  CAS  Google Scholar 

  10. Alayon EM, Nachtegaal M, Ranocchiari M, Bokhoven JAV (2012) Chem Commun 48:404–406

    Article  CAS  Google Scholar 

  11. Alayon EMC, Nachtegaal M, Bodi A, Bokhoven JAV (2014) ACS Catal 4:16–22

    Article  CAS  Google Scholar 

  12. Grundner S, Luo W, Sanchez-Sanchez M, Lercher JA (2016) Chem Commun 52:2553–2556

    Article  CAS  Google Scholar 

  13. Grundner S, Markovits MAC, Li G, Tromp M, Pidko EA, Hensen EJM, Jentys A, Sanchez-Sanchez M, Lercher JA (2015) Nat Commun 6:7546

    Article  Google Scholar 

  14. Beznis NV, Weckhuysen BM, Bitter JH (2010) Catal Lett 138:14–22

    Article  CAS  Google Scholar 

  15. Vanelderen P, Snyder BER, Tsai M-L, Hadt RG, Vancauwenbergh J, Coussens O, Schoonheydt RA, Sels BF, Solomon EI (2015) J Am Chem Soc 137(19):6383–6392

    Article  CAS  Google Scholar 

  16. Sobalik Z, Novakova J, Dedecek J, Sathu NK, Tabor E, Sazama P, Stastny P, Wichterlova B (2011) Micropor Mesopor Mat 146:172–183

    Article  CAS  Google Scholar 

  17. Dedecek J, Capek L, Sazama P, Sobalik Z, Wichterlova B (2011) Appl Cat A-Gen 391(1–2):244–253

    Article  CAS  Google Scholar 

  18. Dedecek J, Sobalik Z, Wichterlova B (2012) Catal Rev-Sci Eng 54:135–223

    Article  CAS  Google Scholar 

  19. Sobalik Z, Sazama P, Dedecek J, Wichterlova B (2014) Appl Catal A-Gen 474:178–185

    Article  CAS  Google Scholar 

  20. Dedecek J, Kaucky D, Wichterlova B, Gonsiorova O (2002) Phys Chem Chem Phys 4:5406–5413

    Article  CAS  Google Scholar 

  21. Dedecek J, Sklenak S, Li C, Wichterlova B, Gabova V, Brus J, Sierka M, Sauer J (2009) J Phys Chem C 113:1447–1458

    Article  CAS  Google Scholar 

  22. Sazama P, Dedecek J, Gabova V, Wichterlova B, Spoto G, Bordiga S (2008) J Catal 254:180–189

    Article  CAS  Google Scholar 

  23. Perea DE, Arslan I, Liu J, Ristanović Z, Kovarik L, Arey BW, Lercher JA, Bare SR, Weckhuysen BM (2015) Nat Commun 6:7589

    Article  Google Scholar 

  24. Han OH, Kim C-S, Hong SB (2002) Angew Chem Int Ed 41:469–472

    Article  CAS  Google Scholar 

  25. Lippens BC, Linsen BG, Boer JHD (1964) J Catal 3:32–37

    Article  CAS  Google Scholar 

  26. Harkins WD, Jura G (1944) J Am Chem Soc 66:1366–1373

    Article  CAS  Google Scholar 

  27. Newville M (2001) J Synchrotron Rad 8:322–324

    Article  CAS  Google Scholar 

  28. Ravel B, Newville M (2005) J Synchrotron Rad 12:537–541

    Article  CAS  Google Scholar 

  29. Brown GM, Chidambaram R (1973) Acta Cryst B 29:2393–2403

    Article  CAS  Google Scholar 

  30. Oswald HR, Reller A, Schmalle HW, Dubler E (1990) Acta Cryst C 46:2279–2284

    Article  Google Scholar 

  31. Narsimhan K, Michaelis VK, Mathies G, Gunther WR, Griffin RG, Román-Leshkov Y (2015) J Am Chem Soc 137:1825–1832

    Article  CAS  Google Scholar 

  32. Sarkany J, d’Itri JL, Sachtler WMH (1992) Catal Lett 16:241–249

    Article  CAS  Google Scholar 

  33. Tsai ML, Hadt RG, Vanelderen P, Sels BF, Schoonheydt RA, Solomon EI (2014) J Am Chem Soc 136:3522–3529

    Article  CAS  Google Scholar 

  34. Tromp M, Bokhoven JAV, Arink AM, Bitter JH, Koten GV, Koningsberger DC (2002) Chem Eur J 8:5667–5678

    Article  CAS  Google Scholar 

  35. Li G, Vassilev P, Sanchez-Sanchez M, Lercher JA, Hensen EJM, Pidko EA (2016) J Catal 338:305–312

    Article  CAS  Google Scholar 

  36. Lei GD, Adelman BJ, Sarkany J, Sachtler WMH (1995) Appl Catal B-Environ 5:245–256

    Article  CAS  Google Scholar 

  37. Costa PD, Moden B, Meitzner GD, Leeza DK, Iglesia E (2002) Phys Chem Chem Phys 4:4590–4601

    Article  Google Scholar 

  38. Gao F, Wang Y, Washton NM, Szanyi J, Peden CHF (2015) ACS Catal 5(11):6780–6791

    Article  CAS  Google Scholar 

  39. Mlinar AN, Baur GB, Bong GG, Getsoian AB, Bell AT (2012) J Catal 296:156–164

    Article  CAS  Google Scholar 

  40. Derouane EG (1998) J Mol Catal A-Chem 134(1–3):29–45

    Article  CAS  Google Scholar 

  41. Corma A (2003) J Catal 216:298–312

    Article  CAS  Google Scholar 

  42. Gounder R, Iglesia E (2009) J Am Chem Soc 131(5):1958–1971

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was partly supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences under Award DE-SC0012702. It was also supported by the EU NEXT-GTL (Innovative Catalytic Technologies & Materials for Next Gas to Liquid Processes) project. We are grateful to Dr. Jiri Dedecek for providing ZSM-5 zeolites with different paired Al sites distribution. We also thank Dr. Evgeny A. Pidko and Sebastian Grundner for very fruitful discussions. The authors would like to thank Martin Neukamm for AAS and TEM measurements and Xaver Hecht for N2-physisorption experiments. XAS measurements were partly carried out at the light source facility at ESRF, Grenoble, France and partly at the Diamond Light Source, Oxfordshire.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maricruz Sanchez-Sanchez or Johannes A. Lercher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1301 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markovits, M.A.C., Jentys, A., Tromp, M. et al. Effect of Location and Distribution of Al Sites in ZSM-5 on the Formation of Cu-Oxo Clusters Active for Direct Conversion of Methane to Methanol. Top Catal 59, 1554–1563 (2016). https://doi.org/10.1007/s11244-016-0676-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0676-x

Keywords

Navigation