Skip to main content
Log in

Mo+TiO2(110) Mixed Oxide Layer: Structure and Reactivity

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We present a STM/XPS/TPD/LEED study of the structural and electronic properties of Mo+Ti mixed oxide layers on TiO2(110), and of their interaction with water, methanol and ethanol. Several different preparation procedures were tested and layers with different degrees of Mo/Ti mixing were prepared. Ordered mixed oxide surface phases with distinct LEED patterns could not be found; for all investigated Mo concentrations a TiO2(110) like pattern was observed. Mo tends to agglomerate on the surface where it is found predominantly as Mo6+ at low coverages and as Mo4+ at high coverages. Mo4+ was also identified in the bulk of the mixed oxide layer. The Mo3d binding energies categorize the Mo4+ species as being dimeric. A third Mo3d doublet is attributed to a Mo species (Mon+) with an oxidation state between those reported for Mo in MoO2 and metallic Mo. Two types of Mo-induced features could be identified in the STM images for low Mo concentrations (in the range of 1 %). At higher Mo concentrations (~50 %) the surface is characterized by stripes with limited lengths in [001] direction. The concentration of bridging oxygen vacancies, which are common defects on TiO2(110), is reduced significantly even at low Mo concentrations. Methanol and ethanol TPD spectra reflect this effect by a decrease of the intensity of the features related to these surface defects. At elevated MoO x coverages, the yield of reaction products in methanol and ethanol TPD spectra are somewhat smaller than those found for clean TiO2(110) and the reactions occur at lower temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Pajonk GM (2000) Contribution of spillover effects to heterogeneous catalysis. Appl Catal A 202(2):157–169

    Article  CAS  Google Scholar 

  2. Weng LT, Delmon B (1992) Phase cooperation and remote-control effects in selective oxidation catalysts. Appl Catal A 81(2):141–213

    Article  CAS  Google Scholar 

  3. Grasselli RK, Burrington JD, Buttrey DJ, DeSanto P, Lugmair CG, Volpe AF, Weingand T (2003) Multifunctionality of active centers in (amm)oxidation catalysts: from Bi-Mo-O-x to Mo-V-Nb-(Te, Sb)-O-x. Top Catal 23(1–4):5–22

    Article  CAS  Google Scholar 

  4. Ferroni M, Guidi V, Martinelli G, Roncarati G, Comini E, Sberveglieri G, Vomiero A, Mea GD (2002) Coalescence inhibition in nanosized titania films and related effects on chemoresistive properties towards ethanol. J Vac Sci Technol B 20(2):523–530

    Article  CAS  Google Scholar 

  5. Kim HY, Lee HM, Pala RGS, Shapovalov V, Metiu H (2008) CO oxidation by rutile TiO2(110) doped with V, W, Cr, Mo, and Mn. J Phys Chem C 112(32):12398–12408

    Article  CAS  Google Scholar 

  6. Garcia-Mota M, Vojvodic A, Metiu H, Man IC, Su HY, Rossmeisl J, Norskov JK (2011) Tailoring the activity for oxygen evolution electrocatalysis on rutile TiO2(110) by transition-metal substitution. ChemCatChem 3(10):1607–1611

    Article  CAS  Google Scholar 

  7. Kim HY, Lee HM, Pala RGS, Metiu H (2009) Oxidative dehydrogenation of methanol to formaldehyde by isolated vanadium, molybdenum, and chromium oxide clusters supported on rutile TiO2(110). J Phys Chem C 113(36):16083–16093

    Article  CAS  Google Scholar 

  8. Krüger P, Petukhov M, Domenichini B, Bourgeois S (2009) Molybdenum thin film growth on a TiO2(110) substrate. J Mol Struct Theochem 903(1–3):67–72

    Article  Google Scholar 

  9. Asaduzzaman A, Krüger P (2007) Adsorption and diffusion of a molybdenum atom on the TiO2(110) surface: a first-principles study. Phys Rev B 76(11):115412

    Article  Google Scholar 

  10. Lyubinetsky I, Yu ZQ, Wang CM, Du Y, Thevuthasan S (2008) Reproducible tip fabrication and cleaning for UHVSTM. Ultramicroscopy 108(9):873–877

    Article  Google Scholar 

  11. Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM (2007) WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705

    Google Scholar 

  12. McCarty KF (2003) Growth regimes of the oxygen-deficient TiO2(110) surface exposed to oxygen. Surf Sci 543(1–3):185–206

    Article  CAS  Google Scholar 

  13. Li M, Hebenstreit W, Gross L, Diebold U, Henderson MA, Jennison DR, Schultz PA, Sears MP (1999) Oxygen-induced restructuring of the TiO2(110) surface: a comprehensive study. Surf Sci 437(1–2):173–190

    Article  CAS  Google Scholar 

  14. Li M, Hebenstreit W, Diebold U, Tyryshkin AM, Bowman MK, Dunham GG, Henderson MA (2000) The influence of the bulk reduction state on the surface structure and morphology of rutile TiO2(110) single crystals. J Phys Chem B 104(20):4944–4950

    Article  CAS  Google Scholar 

  15. Jacob KT, Shekhar C, Waseday Y (2008) Thermodynamic properties and phase diagram for the system MoO2–TiO2. J Am Ceram Soc 91(2):563–568

    Article  CAS  Google Scholar 

  16. Domenichini B, Flank AM, Lagarde P, Bourgeois S (2004) Interfacial reaction between deposited molybdenum and TiO2(110) surface: role of the substrate bulk stoichiometry. Surf Sci 560(1–3):63–78

    Article  CAS  Google Scholar 

  17. Brox B, Olefjord I (1988) ESCA Studies of MoO2 and MoO3. Surf Interface Anal 13(1):3–6

    Article  CAS  Google Scholar 

  18. Werfel F, Minni E (1983) Photoemission-study of the electronic-structure of Mo and Mo oxides. J Phys C 16(31):6091–6100

    Article  CAS  Google Scholar 

  19. Scanlon DO, Watson GW, Payne DJ, Atkinson GR, Egdell RG, Law DSL (2010) Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J Phys Chem C 114(10):4636–4645

    Article  CAS  Google Scholar 

  20. Guimond S (2009) Vanadium and molybdenum oxide thin films on Au(111): growth and surface characterization. Humboldt Universität zu Berlin, Berlin

  21. Wendt S, Schaub R, Matthiesen J et al (2005) Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: a combined high-resolution STM and DFT study. Surf Sci 598(1–3):226–245

    Article  CAS  Google Scholar 

  22. Chun WJ, Asakura K, Iwasawa Y (1998) Polarization-dependent total-reflection fluorescence XAFS study of Mo oxides on a rutile TiO2(110) single crystal surface. J Phys Chem B 102(45):9006–9014

    Article  CAS  Google Scholar 

  23. Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Google Scholar 

  24. Henderson MA (1995) Mechanism for the bulk-assisted reoxidation of ion sputtered TiO2 surfaces: diffusion of oxygen to the surface or titanium to the bulk? Surf Sci 343(1–2):L1156–L1160

    Article  CAS  Google Scholar 

  25. Li M, Hebenstreit W, Diebold U (1998) Oxygen-induced restructuring of the rutile TiO2(110)(1×1) surface. Surf Sci 414(1–2):L951–L956

    Article  CAS  Google Scholar 

  26. Bowker M, Bennett R (2009) The role of Ti3+ interstitials in TiO2(110) reduction and oxidation. J Phys Condens Matter 21(47):474224

    Article  Google Scholar 

  27. CasaXPS (2006) Peak fitting in XPS. http://www.casaxps.com/help_manual/manual_updates/peak_fitting_in_xps.pdf

  28. Grünert W, Stakheev AY, Morke W, Feldhaus R, Anders K, Shpiro ES, Minachev KM (1992) Reduction and metathesis activity of MoO3/Al2O3 Catalysts. 1. An Xps investigation of MoO3/Al2O3 catalysts. J Catal 135(1):269–286

    Article  Google Scholar 

  29. Grünert W, Stakheev AY, Feldhaus R, Anders K, Shpiro ES, Minachev KM (1991) Analysis of Mo3d XPS spectra of supported Mo Catalysts: an alternative approach. J Phys Chem 95(3):1323–1328

    Article  Google Scholar 

  30. Chae HK, Klemperer WG, Marquart TA (1993) High-nuclearity oxomolybdenum(V) complexes. Coord Chem Rev 128(1–2):209–224

    Article  CAS  Google Scholar 

  31. Villata LS, Feliz MR, Capparelli AL (2000) Photochemical and catalytic properties of dimeric species of molybdenum(V). Coord Chem Rev 196:65–84

    Article  CAS  Google Scholar 

  32. Meriaudeau P, Clerjaud B, Che M (1983) An electron-paramagnetic resonance study of Mo5+ pairs in polycrystalline TiO2. J Phys Chem 87(20):3872–3876

    Article  CAS  Google Scholar 

  33. Che M, Fichelle G, Meriaude P (1972) Paramagnetic absorption of pentavalent molybdenum in various symmetries of TiO2. Chem Phys Lett 17(1):66–69

    Article  CAS  Google Scholar 

  34. Kyi R (1962) Paramagnetic resonance of Mo5+ in TiO2. Phys Rev 128(1):151–153

    Article  CAS  Google Scholar 

  35. Meriaudeau P (1980) Paramagnetic-resonance of interstitial Mo5+ in a TiO2 lattice. Chem Phys Lett 72(3):551–553

    Article  CAS  Google Scholar 

  36. Valigi M, Gazzoli D, Jacono ML, Minelli G, Porta P (1982) A structural and magnetic study of the MoO x –TiO2 system. Zeitschrift Fur Physikalische Chemie-Wiesbaden 132(1):29–40

    Article  CAS  Google Scholar 

  37. Quincy RB, Houalla M, Proctor A, Hercules DM (1990) Distribution of molybdenum oxidation-states in reduced Mo/TiO2 catalysts: correlation with benzene hydrogenation activity. J Phys Chem 94(4):1520–1526

    Article  CAS  Google Scholar 

  38. Yamada M, Yasumaru J, Houalla M, Hercules DM (1991) Distribution of molybdenum oxidation-states in reduced Mo/Al2O3 catalysts: correlation with benzene hydrogenation activity. J Phys Chem 95(18):7037–7042

    Article  CAS  Google Scholar 

  39. Briand LE, Tkachenko OP, Guraya M, Wachs IE, Grünert W (2004) Methodical aspects in the surface analysis of supported molybdena catalysts. Surf Interface Anal 36(3):238–245

    Article  CAS  Google Scholar 

  40. Deng X, Quek SY, Biener MM, Biener J, Kang DH, Schalek R, Kaxiras E, Friend CM (2008) Selective thermal reduction of single-layer MoO3 nanostructures on Au(111). Surf Sci 602(6):1166–1174

    Article  CAS  Google Scholar 

  41. Makinson JD, Lee JS, Magner SH, De Angelis RJ, Weins WN, Hieronymus AS (2000) X-ray diffraction signatures of defects in nanocrystalline materials. Adv X-Ray Anal 42(C):407–411

    CAS  Google Scholar 

  42. Li Z, Smith RS, Kay BD, Dohnálek Z (2011) Determination of absolute coverages for small aliphatic alcohols on TiO2(110). J Phys Chem C 115(45):22534–22539

    Article  CAS  Google Scholar 

  43. Henderson MA (1996) Structural sensitivity in the dissociation of water on TiO2 single-crystal surfaces. Langmuir 12(21):5093–5098

    Article  CAS  Google Scholar 

  44. Hugenschmidt MB, Gamble L, Campbell CT (1994) The interaction of H2O with a TiO2(110) surface. Surf Sci 302(3):329–340

    Article  CAS  Google Scholar 

  45. Henderson MA (1996) An HREELS and TPD study of water on TiO2(110): the extent of molecular versus dissociative adsorption. Surf Sci 355(1–3):151–166

    Article  CAS  Google Scholar 

  46. Henderson M, Otero-Tapia S, Castro M (1999) The chemistry of methanol on the TiO2 (110) surface: the influence of vacancies and coadsorbed species. Faraday Discuss 114:313–329

    Article  CAS  Google Scholar 

  47. Farfan-Arribas E, Madix RJ (2003) Different binding sites for methanol dehydrogenation and deoxygenation on stoichiometric and defective TiO2(110) surfaces. Surf Sci 544(2–3):241–260

    Article  CAS  Google Scholar 

  48. Redhead P (1962) Thermal desorption of gases. Vacuum 12:203–211

    Google Scholar 

  49. Kim YK, Kay BD, White JM, Dohnálek Z (2007) Alcohol chemistry on rutile TiO2(110): the influence of alkyl substituents on reactivity and selectivity. J Phys Chem C 111(49):18236–18242

    Article  CAS  Google Scholar 

  50. Bondarchuk O, Kim YK, White JM, Kim J, Kay BD, Dohnalek Z (2007) Surface chemistry of 2-propanol on TiO2(110): low- and high-temperature dehydration, isotope effects, and influence of local surface structure. J Phys Chem C 111(29):11059–11067

    Article  CAS  Google Scholar 

  51. Kim YK, Kay BD, White JM, Dohnálek Z (2008) 2-Propanol dehydration on TiO2(110): the effect of bridge-bonded oxygen vacancy blocking. Surf Sci 602(2):511–516

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) through SFB546 (Structure, Dynamics and Reactivity of Transition Metal Oxide Aggregates). Daniel Göbke, Mathias Naschitzki, and Elena Primorac are acknowledged for their support during a beamtime at the BESSY II electron storage ring.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans‐Joachim Freund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karslıoğlu, O., Song, X., Kuhlenbeck, H. et al. Mo+TiO2(110) Mixed Oxide Layer: Structure and Reactivity. Top Catal 56, 1389–1403 (2013). https://doi.org/10.1007/s11244-013-0142-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0142-y

Keywords

Navigation