Skip to main content
Log in

On the Structure Sensitivity of Direct NO Decomposition over Low-Index Transition Metal Facets

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We present a study of the dissociative chemisorption of NO, O2, and N2 over close-packed, stepped, kinked, and open (fcc {111}, {211}, {311}, {532}, {100}, and {110}) transition metal facets using density functional theory (DFT). The offset of the Brønsted–Evans–Polanyi (BEP) relations suggest that the {111} surface is the least reactive, and that the {110} surface is the most reactive. This observation is verified by establishing volcano-relations based on mean-field microkinetic models for each facet, showing that the maximum rate over {110} is 4 orders of magnitude larger than the maximum {111} rate. The ordering of the maximum activity over the facets is: {110} > {100} ~ {532} > {311} ~ {211} > {111}, which is in general agreement with the offset in the BEP relations. We show that the top-point location and shape of the volcano relations are approximately independent of facet. This observation lends credibility to the approach of analyzing trends in catalytic reactivity over a single low-index facet, and assuming the experimentally observed activity trends are qualitatively well-described by such a single-facet analysis. Our study suggests that a key element for generally obtaining quantitative agreement between theory and experiments is for the simulations to address in detail the propensities of the various types of active sites. Finally, we show that the ordering of NO decomposition rates among metals and facets is essentially unaltered when using BEP- and scaling relations in the microkinetics instead of explicit DFT calculations for each elementary reaction step, and that using a “universal” BEP relation introduces no significant additional qualitative error in trend prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu Z, Ihl Woo S (2006) Catal Rev 48:43–89

    Article  CAS  Google Scholar 

  2. Glick HS, Klein JJ, Squire W (1957) J Chem Phys 27:850–857

    Article  CAS  Google Scholar 

  3. Parvulescu VI, Grange P, Delmon B (1998) Catal Today 46:233–316

    Article  CAS  Google Scholar 

  4. Garin F (2001) Appl Catal A-Gen 222:183–219

    Article  CAS  Google Scholar 

  5. Lopez N, Janssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligaard T, Nørskov JK (2004) J Catal 223(1):232–235

    Article  CAS  Google Scholar 

  6. Li L, Larsen AH, Romero NA, Morozov VA, Glinsvad C, Abild-Pedersen F, Greeley J, Jacobsen KW, Nørskov JK (2013) J Phys Chem Lett 4(1):222–226

    Article  CAS  Google Scholar 

  7. Somorjai GA, Joyner RW, Lang B (1972) Proc Royal Soc Lond A 331:335–346

    Article  CAS  Google Scholar 

  8. Zambelli T, Wintterlin J, Trost J, Ertl G (1996) Science 273:1688–1690

    Article  CAS  Google Scholar 

  9. Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I, Törnqvist E, Nørskov JK (1999) Phys Rev Lett 83(9):1814–1817

    Article  Google Scholar 

  10. Jiang T, Mowbray DJ, Dobrin S, Falsig H, Hvolbæk B, Bligaard T, Nørskov JK (2009) J Phys Chem C 113(24):10548–10553

    Article  CAS  Google Scholar 

  11. Nørskov JK, Bligaard T, Hvolbæk B, Abild-Pedersen F, Chorkendorff I, Christensen CH (2008) Chem Soc Rev 37(10):2163–2171

    Article  Google Scholar 

  12. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) J Phys Chem B 108(46):17886–17892

    Article  Google Scholar 

  13. Jones G, Jakobsen JG, Shim SS, Kleis J, Andersson MP, Rossmeisl J, Abild-Pedersen F, Bligaard T, Helveg S, Hinnemann B, Rostrup-Nielsen JR, Chorkendorff I, Sehested J, Nørskov JK (2008) J Catal 259(1):147–160

    Article  CAS  Google Scholar 

  14. Evans MG, Polanyi M (1938) Trans Faraday Soc 34:11

    Article  CAS  Google Scholar 

  15. Pallassana V, Neurock M (2000) J Catal 191(2):301–317

    Article  CAS  Google Scholar 

  16. Liu ZP, Hu P (2001) J Chem Phys 115(11):4977–4980

    Article  CAS  Google Scholar 

  17. Logadottir A, Rod TH, Nørskov JK, Hammer B, Dahl S, Jacobsen CJH (2001) J Catal 197(2):229–231

    Article  CAS  Google Scholar 

  18. Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) J Catal 209(2):275–278

    Article  Google Scholar 

  19. Michaelides A, Liu ZP, Zhang CJ, Alavi A, King DA, Hu P (2003) J Am Chem Soc 125(13):3704–3705

    Article  CAS  Google Scholar 

  20. Andersin J, Lopez N, Honkala K (2009) J Phys Chem C 113(19):8278–8286

    Article  CAS  Google Scholar 

  21. Loffreda D, Delbecq F, Vigne F, Sautet P (2009) Angew Chem-Int Edit 48(47):8978–8980

    Article  CAS  Google Scholar 

  22. Wang S, Temel B, Shen J, Jones G, Grabow LC, Studt F, Bligaard T, Abild-Pedersen F, Christensen CH, Nørskov JK (2011) Catal Lett 141(3):370–373

    Article  CAS  Google Scholar 

  23. Wang S, Petzold V, Tripkovic V, Kleis J, Howalt JG, Skulason E, Fernandez EM, Hvolbæk B, Jones G, Toftelund A, Falsig H, Björketun M, Studt F, Abild-Pedersen F, Rossmeisl J, Nørskov JK, Bligaard T (2011) Phys Chem Chem Phys 13(46):20760–20765

    Article  CAS  Google Scholar 

  24. Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J (2004) J Catal 224(1):206–217

    Article  CAS  Google Scholar 

  25. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Nat Chem 1(1):37–46

    Article  Google Scholar 

  26. Dahl S, Logadottir A, Jacobsen CJH, Nørskov JK (2001) Appl Catal A-Gen 222(1–2):19–29

    Article  CAS  Google Scholar 

  27. Vang RT, Honkala K, Dahl S, Vestergaard EK, Schnadt J, Lægsgaard E, Clausen BS, Nørskov JK, Besenbacher F (2005) Nat Mater 4(2):160–162

    Article  CAS  Google Scholar 

  28. Wolf RM, Bakker JW, Nieuwenhuys BE (1991) Surf Sci 246:135–140

    Article  CAS  Google Scholar 

  29. Rempel J, Greeley J, Hansen LB, Nielsen OH, Nørskov JK, Mavrikakis M (2009) J Phys Chem C 113(48):20623–20631

    Article  CAS  Google Scholar 

  30. Falsig H, Bligaard T, Rass-Hansen J, Kustov AL, Christensen CH, Nørskov JK (2007) Top Catal 45(1–4):117–120

    Article  CAS  Google Scholar 

  31. Bahn Sr, Jacobsen KW (2002) Comput Sci Eng 4(3):56–66

    Article  CAS  Google Scholar 

  32. http://wiki.fysik.dtu.dk/dacapo/. Accessed 25 Oct 2013

  33. Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59(11):7413–7421

    Article  Google Scholar 

  34. Vanderbilt D (1990) Phys Rev B 41(11):7892–7895

    Article  Google Scholar 

  35. Monkhorst HJ, Pack JD (1976) Phys Rev B 13(12):5188–5192

    Article  Google Scholar 

  36. Dumesic JA, Rudd DF, Aparicio LM, Rekoske JE, Treviño AA (1993) The microkinetics of heterogeneous catalysis. ACS professional reference book. American Chemical Society, Washington

    Google Scholar 

  37. Balandin AA (1958) Adv Catal 10:96–129

    CAS  Google Scholar 

  38. http://webbook.nist.gov/. Accessed 25 Oct 2013

  39. Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skulason E, Bligaard T, Nørskov JK (2007) Phys Rev Lett 99(1)

  40. Falsig H, Bligaard T, Christensen CH, Nørskov JK (2007) Pure Appl Chem 79(11):1895–1903

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Professor J.K. Nørskov, both for helpful discussions on the present study, and also more generally for the great privilege it has been to have him as mentor during the early stages of our research careers. Financial support from the U.S. Department of Energy, Office of Basic Energy Sciences to the SUNCAT Center for Interface Science and Catalysis, and from the Strategic Research Council of Denmark to the Technical University of Denmark, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bligaard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2728 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falsig, H., Shen, J., Khan, T.S. et al. On the Structure Sensitivity of Direct NO Decomposition over Low-Index Transition Metal Facets. Top Catal 57, 80–88 (2014). https://doi.org/10.1007/s11244-013-0164-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0164-5

Keywords

Navigation