Skip to main content
Log in

Nanoparticle Shape Selectivity in Catalysis: Butene Isomerization and Hydrogenation on Platinum

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

New advances in colloidal and other self-assembly synthetic methods have afforded the controlled growth of nanoparticles with well-defined sizes and shapes. Recently, the catalysis community has been trying to capitalize on this knowledge for the design of new catalytic processes. In particular, the use of metal nanoparticles with specific shapes has been explored in several instances as a way to control reaction selectivity. Here we review the results from our efforts to use platinum nanoparticles dispersed on high-surface-area supports to perform selective olefin conversions. Emphasis is given to the surface-science experiments and quantum-mechanics calculations that led us to identify potential variations in selectivity in carbon–carbon double-bond isomerization and hydrogenation reactions with the structure of the metal surface. Temperature programmed desorption (TPD) and reflection–absorption infrared spectroscopy data for 2-butenes adsorbed on Pt(111) single-crystal surfaces highlighted the relative higher stability of adsorbed cis-2-butene compared to trans-2-butene and the preference for the promotion of trans-to-cis conversions on that surface. It was also determined that coadsorbed hydrogen plays a key role in defining the relative stabilities of the adsorbates, favoring pi rather than di-sigma bonding and reversing the higher stability of the trans adsorbates seen on clean Pt(111). DFT calculations suggested that such unique results may be accounted for by the need for extensive surface reconstruction to accommodate the adsorbates on such flat planes, a requirement that appears to be less severe with the cis isomer. TPD experiments on stepped Pt(557) surfaces pointed to the minimal importance of steps in promoting these isomerization reactions, although they do seem to help with the full hydrogenation to the alkanes. More extensive olefin adsorption destabilization with hydrogen coadsorption and faster alkane production was seen on Pt(100), but selectivity towards the cis isomer was still identified. On the more open (2 × 1)-reconstructed Pt(110) surface, on the other hand, trans-2-butene is the most stable of the two isomers. It was finally shown that these surface-science results translate into changes in selectivity in real catalysts with platinum nanoparticle shape. Catalysts were prepared by using colloidal Pt nanoparticles with tetrahedral, cubic, and rounded shapes, and unique selectivity toward cis-2-butene formation was measured on the first of those samples. It appears that the (111) facets exposed by the tetrahedral Pt nanoparticles do show the same trans-to-cis conversion preference in catalysis seen in the surface-science studies carried out with single-crystal surfaces and under ultrahigh vacuum conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zaera F, Gellman AJ, Somorjai GA (1986) Acc Chem Res 19:24

    Article  CAS  Google Scholar 

  2. Bennett CO, Che M (1989) J Catal 120:293

    Article  CAS  Google Scholar 

  3. Nørskov JK, Bligaard T, Hvolbœk B, Abild-Pedersen F, Chorkendorff I, Christensen CH (2008) Chem Soc Rev 37:2163

    Article  CAS  Google Scholar 

  4. Van Santen RA (2008) Acc Chem Res 42:57

    Article  CAS  Google Scholar 

  5. Ma Z, Zaera F (2006) Surf Sci Rep 61:229

    Article  CAS  Google Scholar 

  6. Anderson JR, Macdonald RJ, Shimoyama Y (1971) J Catal 20:147

    Article  CAS  Google Scholar 

  7. Manogue WH, Katzer JR (1974) J Catal 32:166

    Article  CAS  Google Scholar 

  8. Somorjai GA, Zaera F (1982) J Phys Chem 86:3070

    Article  CAS  Google Scholar 

  9. Boudart M, McDonald MA (1984) J Phys Chem 88:2185

    Article  CAS  Google Scholar 

  10. Somorjai GA, Materer N (1994) Top Catal 1:215

    Article  CAS  Google Scholar 

  11. Koper MTM (2011) Nanoscale 3:2054

    Article  CAS  Google Scholar 

  12. van Santen RA, Ghouri MM, Shetty S, Hensen EMH (2011) Catal Sci Technol 1:891

    Article  CAS  Google Scholar 

  13. Torres Galvis HM, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, de Jong KP (2012) J Am Chem Soc 134:16207

    Article  CAS  Google Scholar 

  14. Bond GC (2005) Metal-catalysed reactions of hydrocarbons. Springer, New York

    Google Scholar 

  15. Horiuti J, Miyahara K (1968) Hydrogenation of ethylene on metallic catalysts. National Bureau of Standards, Washington

    Google Scholar 

  16. Schlatter JC, Boudart M (1972) J Catal 24:482

    Article  CAS  Google Scholar 

  17. Twigg GH (1950) Discuss Faraday Soc 8:152

    Article  Google Scholar 

  18. Paal Z, Thomson SJ, Webb G, McCorkindale NJ (1975) Acta Chir Acad Sci Hung 84:445

    CAS  Google Scholar 

  19. Davis SM, Zaera F, Somorjai GA (1982) J Catal 77:439

    Article  CAS  Google Scholar 

  20. Zaera F, Somorjai GA (1984) J Am Chem Soc 106:2288

    Article  CAS  Google Scholar 

  21. Zaera F (2013) Phys Chem Chem Phys 15:11988

    Article  CAS  Google Scholar 

  22. Thomson SJ, Webb G (1976) J Chem Soc Chem Commun 526

  23. Che M, Bennett CO (1989) Adv Catal 36:55

    CAS  Google Scholar 

  24. Silvestre-Albero J, Rupprechter G, Freund H-J (2005) J Catal 235:52

    Article  CAS  Google Scholar 

  25. Berhault G, Bisson L, Thomazeau C, Verdon C, Uzio D (2007) Appl Catal A 327:32

    Article  CAS  Google Scholar 

  26. Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA (2007) Nano Lett 7:3097

    Article  CAS  Google Scholar 

  27. Lee I, Delbecq F, Morales R, Albiter MA, Zaera F (2009) Nat Mater 8:132

    Article  CAS  Google Scholar 

  28. Lee I, Zaera F (2010) J Catal 269:359

    Article  CAS  Google Scholar 

  29. Anderson JR (1985) Sci Prog 69:461

    CAS  Google Scholar 

  30. Bond GC (1993) Acc Chem Res 26:490

    Article  CAS  Google Scholar 

  31. Somorjai GA (2010) Introduction to surface chemistry and catalysis, 2nd edn. Wiley, New York

    Google Scholar 

  32. Campbell CT (1989) Adv Catal 36:1

    CAS  Google Scholar 

  33. Rodriguez JA, Goodman DW (1991) Surf Sci Rep 14:1

    Article  CAS  Google Scholar 

  34. Zaera F, Fischer DA, Shen S, Gland JL (1988) Surf Sci 194:205

    Article  CAS  Google Scholar 

  35. Hoffmann FM, Weisel MD (1993) J Vac Sci Technol A 11:1957

    Article  CAS  Google Scholar 

  36. Hess C, Ozensoy E, Goodman DW (2003) J Phys Chem B 107:2759

    Article  CAS  Google Scholar 

  37. Kubota J, Ma Z, Zaera F (2003) Langmuir 19:3371

    Article  CAS  Google Scholar 

  38. Somorjai GA, Frei H, Park JY (2009) J Am Chem Soc 131:16589

    Article  CAS  Google Scholar 

  39. Tilekaratne A, Simonovis JP, López Fagúndez MF, Ebrahimi M, Zaera F (2012) ACS Catal 2:2259

    Article  CAS  Google Scholar 

  40. Zaera F (2012) Chem Rev 112:2920

    Article  CAS  Google Scholar 

  41. Goodman DW (1994) Surf Sci 299(300):837

    Article  Google Scholar 

  42. Goodman DW (1995) Chem Rev 95:523

    Article  CAS  Google Scholar 

  43. Gao F, Goodman DW (2012) Annu Rev Phys Chem 63:265

    Article  CAS  Google Scholar 

  44. Davis SM, Zaera F, Somorjai GA (1984) J Catal 85:206

    Article  CAS  Google Scholar 

  45. Wieckowski A, Rosasco SD, Salaita GN, Hubbard A, Bent BE, Zaera F, Godbey D, Somorjai GA (1985) J Am Chem Soc 107:5910

    Article  CAS  Google Scholar 

  46. Zaera F, Somorjai GA (1985) J Phys Chem 89:3211

    Article  CAS  Google Scholar 

  47. Cremer PS, Su X, Somorjai GA, Shen YR (1998) J Mol Catal A Chem 131:225

    Article  CAS  Google Scholar 

  48. St. Clair TP, Goodman DW (2000) Top Catal 13:5

    Article  CAS  Google Scholar 

  49. Freund HJ, Ernst N, Risse T, Hamann H, Rupprechter G (2001) Phys Status Solidi 187:257

    Article  CAS  Google Scholar 

  50. Goodman DW (1996) J Phys Chem 100:13090

    Article  CAS  Google Scholar 

  51. Valden M, Lai X, Goodman DW (1998) Science 281:1647

    Article  CAS  Google Scholar 

  52. Santra AK, Goodman DW (2003) J Phys Condens Matter 15:R31

    Article  CAS  Google Scholar 

  53. Narayanan R, El-Sayed MA (2005) J Phys Chem B 109:12663

    Article  CAS  Google Scholar 

  54. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025

    Article  CAS  Google Scholar 

  55. Tao AR, Habas S, Yang P (2008) Small 4:310

    Article  CAS  Google Scholar 

  56. Semagina N, Kiwi-Minsker L (2009) Catal Rev Sci Eng 51:147

    Article  CAS  Google Scholar 

  57. Chen J, Lim B, Lee EP, Xia Y (2009) Nano Today 4:81

    Article  CAS  Google Scholar 

  58. Lee K, Kim M, Kim H (2010) J Mater Chem 20:3791

    Article  CAS  Google Scholar 

  59. Jia C-J, Schüth F (2011) Phys Chem Chem Phys 13:2457

    Article  CAS  Google Scholar 

  60. Zaera F (2013) Chem Soc Rev 42:2746

    Article  CAS  Google Scholar 

  61. Somorjai GA, Park JY (2008) Angew Chem Int Ed 47:9212

    Article  CAS  Google Scholar 

  62. Shiju NR, Guliants VV (2009) Appl Catal A 356:1

    Article  CAS  Google Scholar 

  63. Zaera F (2010) J Phys Chem Lett 1:621

    Article  CAS  Google Scholar 

  64. Lee I, Albiter MA, Zhang Q, Ge J, Yin Y, Zaera F (2011) Phys Chem Chem Phys 13:2449

    Article  CAS  Google Scholar 

  65. Zaera F (2012) Catal Lett 142:501

    Article  CAS  Google Scholar 

  66. Lee H, Kim C, Yang S, Han J, Kim J (2012) Catal Surv Asia 16:14

    Article  CAS  Google Scholar 

  67. Lee I, Zaera F (2005) J Phys Chem B 109:2745

    Article  CAS  Google Scholar 

  68. Lee I, Zaera F (2005) J Am Chem Soc 127:12174

    Article  CAS  Google Scholar 

  69. Redhead PA (1962) Vacuum 12:203

    Article  CAS  Google Scholar 

  70. Zaera F (2013) In: Schloegl R (ed) Surface inorganic chemistry and metal-based catalysis, vol 7, chapter 8. Elsevier, Oxford (ISBN-13: 978-0080977744)

  71. Veldsink JW, Bouma MJ, Schoon N-H, Beenackers AACM (1997) Catal Rev Sci Eng 39:253

    Article  CAS  Google Scholar 

  72. McArdle S, Girish S, Leahy JJ, Curtin T (2011) J Mol Catal A Chem 351:179

    Article  CAS  Google Scholar 

  73. Lee I, Zaera F (2007) J Phys Chem C 111:10062

    Article  CAS  Google Scholar 

  74. Zaera F, Chrysostomou D (2000) Surf Sci 457:71

    Article  CAS  Google Scholar 

  75. Öfner H, Zaera F (1997) J Phys Chem B 101:396

    Article  Google Scholar 

  76. Lee I, Nguyen MK, Morton TH, Zaera F (2008) J Phys Chem C 112:14117

    Article  CAS  Google Scholar 

  77. Delbecq F, Zaera F (2008) J Am Chem Soc 130:14924

    Article  CAS  Google Scholar 

  78. Zaera F (1995) Chem Rev 95:2651

    Article  CAS  Google Scholar 

  79. Bent BE (1996) Chem Rev 96:1361

    Article  CAS  Google Scholar 

  80. Zaera F (1992) Acc Chem Res 25:260

    Article  CAS  Google Scholar 

  81. White JM (1998) J Mol Catal A Chem 131:71

    Article  CAS  Google Scholar 

  82. Syomin D, Koel BE (2001) Surf Sci 492:L693

    Article  CAS  Google Scholar 

  83. Bent BE, Nuzzo RG, Zegarski BR, Dubois LH (1991) J Am Chem Soc 113:1137

    Article  CAS  Google Scholar 

  84. Zaera F, Hoffmann H (1991) J Phys Chem 95:6297

    Article  CAS  Google Scholar 

  85. Tjandra S, Zaera F (1992) Langmuir 8:2090

    Article  CAS  Google Scholar 

  86. Lee I, Hong J, Zaera F (2011) J Phys Chem C 115:982

    Article  CAS  Google Scholar 

  87. Ye P, Gellman AJ (2006) J Phys Chem B 110:9660

    Article  CAS  Google Scholar 

  88. Van Hove MA, Somorjai GA (1980) Surf Sci 92:489

    Article  Google Scholar 

  89. Brandt B, Fischer J-H, Ludwig W, Schauermann S, Libuda J, Zaera F, Freund H-J (2008) J Phys Chem C 112:11408

    Article  CAS  Google Scholar 

  90. Wilde M, Fukutani K, Ludwig W, Brandt B, Fischer JH, Schauermann S, Freund HJ (2008) Angew Chem Int Ed 47:9289

    Article  CAS  Google Scholar 

  91. Brandt B, Ludwig W, Fischer JH, Libuda J, Zaera F, Schauermann S (2009) J Catal 265:191

    Article  CAS  Google Scholar 

  92. Yoon CH, Yang MX, Somorjai GA (1998) J Catal 176:35

    Article  CAS  Google Scholar 

  93. Blakely DW, Somorjai GA (1977) Surf Sci 65:419

    Article  CAS  Google Scholar 

  94. Niehus H (1984) Surf Sci 145:407

    Article  CAS  Google Scholar 

  95. Lee I, Morales R, Albiter MA, Zaera F (2008) Proc Natl Acad Sci USA 105:15241

    Article  CAS  Google Scholar 

  96. Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Science 272:1924

    Article  CAS  Google Scholar 

  97. Deutsch DS, Lafaye G, Liu D, Chandler B, Williams CT, Amiridis MD (2004) Catal Lett 97:139

    Article  CAS  Google Scholar 

  98. Albiter MA, Zaera F (2011) Appl Catal A 391:386

    Article  CAS  Google Scholar 

  99. Huang W, Kuhn JN, Tsung C-K, Zhang Y, Habas SE, Yang P, Somorjai GA (2008) Nano Lett 8:2027

    Article  CAS  Google Scholar 

  100. Sonstrom P, Bäumer M (2011) Phys Chem Chem Phys 13:19270

    Article  CAS  Google Scholar 

  101. Albiter MA, Zaera F (2010) Langmuir 26:16204

    Article  CAS  Google Scholar 

  102. Zaera F (2002) J Phys Chem B 106:4043

    Article  CAS  Google Scholar 

  103. An K, Somorjai GA (2012) ChemCatChem 4:1512

    Article  CAS  Google Scholar 

  104. Li Y, Liu Q, Shen W (2011) Dalton Trans 40:5811

    Article  CAS  Google Scholar 

  105. Ertl G (2008) Angew Chem Int Ed 47:3524

    Article  CAS  Google Scholar 

  106. Renzas J, Zhang Y, Huang W, Somorjai G (2009) Catal Lett 132:317

    Article  CAS  Google Scholar 

  107. Wang R, He H, Liu L-C, Dai H-X, Zhao Z (2012) Catal Sci Technol 2:575

    Article  CAS  Google Scholar 

  108. Ludwig W, Savara A, Schauermann S, Freund H-J (2010) ChemPhysChem 11:2319

    Article  CAS  Google Scholar 

  109. Mostafa S, Behafarid F, Croy JR, Ono LK, Li L, Yang JC, Frenkel AI, Roldan Cuenya B (2010) J Am Chem Soc 132:15714

    Article  CAS  Google Scholar 

  110. Zhou K, Li Y (2012) Angew Chem Int Ed 51:602

    Article  CAS  Google Scholar 

  111. Tsung C-K, Kuhn JN, Huang W, Aliaga C, Hung L-I, Somorjai GA, Yang P (2009) J Am Chem Soc 131:5816

    Article  CAS  Google Scholar 

  112. Wilson J, Guo H, Morales R, Podgornov E, Lee I, Zaera F (2007) Phys Chem Chem Phys 9:3830

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial assistance for the research reported here was provided by the U. S. National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Zaera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, I., Zaera, F. Nanoparticle Shape Selectivity in Catalysis: Butene Isomerization and Hydrogenation on Platinum. Top Catal 56, 1284–1298 (2013). https://doi.org/10.1007/s11244-013-0155-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0155-6

Keywords

Navigation