Skip to main content
Log in

Activity Comparison of Different Solid Acid Catalysts in Etherification of Glycerol with tert-Butyl Alcohol in Flow and Batch Reactors

  • Orginal Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In the presented work, etherification of glycerol with TBA was investigated in a continuous flow and also in a batch reactor using nine different commercial solid acid catalysts, namely Amberlyst-15, Amberlyst-36, Amberlyst-35, Amberlyst-16, Relite EXC8D, Lewatit K2629, H-Beta, H-Mordenite and Nafion SAC-13. Results proved the advantages of flow reactor to achieve quite high glycerol conversion values in very short residence times, due to efficient contact of reactants with the solid catalyst, which was caused by higher catalyst to reactant ratio within the reactor. Results of batch reactor experiments obtained in the temperature range of 80–200 °C proved the importance of operating temperature on the catalytic performance of these materials. Amberlyst-15, which has the highest Brønsted acidity, gave the highest glycerol conversion at 90–100 °C. However, this material is unstable at temperatures higher than 110 °C. Performances of Amberlyst-36 and Relite EXC8D were the best in the range of 110–150 °C, which started to become unstable at 150 °C. Although the catalytic performance of Nafion-SAC-13 was not as good as Amberlyst type resins at temperatures up to 150 °C, its thermal stability was higher and could be used up to 200 °C. Although Brønsted acidity was the most important property of these materials in the etherification reaction of glycerol, results also proved the importance of diffusion resistance on the observed conversion values, which limited the penetration of glycerol to the active acid sites, especially in the catalysts with smaller pore diameters and at lower temperatures. Increased significance of swelling at higher temperatures, especially with Amberlyst-36 which had lower cross-linking in its structure and less rigidity, contributed to the penetration of the reactants to the active sites. Water produced during the etherification reaction was also shown to cause deactivation of the catalysts by reversible adsorption on the acid sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rutz D, Janssen R (2007) Biodiesel technology handbook. WIP Renewable Energies, München

    Google Scholar 

  2. Karinen RS, Krause AOI (2006) Appl Catal A 306:128–133

    Article  CAS  Google Scholar 

  3. Melero JA, Vicente G, Paniagua M, Morales G, Muñoz P (2012) Bioresource Technol 103:142–151

    Article  CAS  Google Scholar 

  4. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD (2007) Angew Chem Int Ed 46:2–20

    Article  Google Scholar 

  5. Celik E, Ozbay N, Oktar N, Calik P (2008) Ind Eng Chem Res 47:2985–2990

    Article  CAS  Google Scholar 

  6. Oktar N, Murtezaoglu K, Dogu G, Gonderten I, Dogu T (1999) J Chem Technol Biotechnol 74:155–161

    Article  CAS  Google Scholar 

  7. Dogu T, Boz N, Aydın E, Oktar N, Murtezaoglu K, Dogu G (2001) Ind Eng Chem Res 40:5044–5051

    Article  CAS  Google Scholar 

  8. Boz N, Dogu T, Murtezaoglu K, Dogu G (2004) Appl Catal A 268:175–182

    Article  CAS  Google Scholar 

  9. Boz N, Dogu T (2005) AlChE J 51:631–640

    Article  CAS  Google Scholar 

  10. Obali Z, Dogu T (2008) Chem Eng J 138:548–555

    Article  CAS  Google Scholar 

  11. Serio MD, Casale L, Tesser R, Santacesaria E (2010) Energy Fuel 24:4668–4672

    Article  Google Scholar 

  12. Klepacova K, Mravec D, Bajus M (2006) Chem Pap 60:224–230

    Article  CAS  Google Scholar 

  13. Klepacova K, Mravec D, Alexander K, Bajus M (2007) Appl Catal A 328:1–13

    Article  CAS  Google Scholar 

  14. Behr A, Obendorf L (2003) Eng Life Sci 2:185–189

    Article  Google Scholar 

  15. Melero JA, Vincente G, Morales G, Panaigua M, Moreno JM, Roldan R, Ezquerro A, Perez C (2008) Appl Catal A 346:44–51

    Article  CAS  Google Scholar 

  16. Zhao W, Yang B, Yi C, Lei Z, Xu J (2010) Ind Eng Chem Res 49:12399–12404

    Article  CAS  Google Scholar 

  17. Klepacova K, Mravec D, Bajus M (2005) Appl Catal A 294:141–147

    Article  CAS  Google Scholar 

  18. Frusteri F, Arena F, Bonura G, Cannilla C, Spadaro L, Blassi OD (2009) Appl Catal A 367:77–83

    Article  CAS  Google Scholar 

  19. Ozbay N, Oktar N, Dogu G, Dogu T (2010) Int J Chem React Eng 8: Article A18.

  20. Ozbay N, Oktar N, Dogu G, Dogu T (2012) Ind Eng Chem Res 51:8788–8895

    Article  CAS  Google Scholar 

  21. Sigma-Aldirch Co. Home Page, http://www.sigmaaldrich.com/sigma-aldrich/home.html

  22. Rohm and Haas Co. Home Page, http://www.rohmhaas.com/wcm/index.page

  23. Degirmenci L, Oktar N, Dogu G (2009) Ind Eng Chem Res 48:2566–2576

    Article  CAS  Google Scholar 

  24. Resindion S.R.L. Home page, http://www.resindion.com/

  25. Zhou Y, Woo LK, Angelici RJ (2007) Appl Catal A 333:238–244

    Article  CAS  Google Scholar 

  26. Macko T, Adler M, Pasch H, Joeri FD, Raphael A (2004) J Liq Chromatogr Relat Technol 27:1743–1758

    Article  CAS  Google Scholar 

  27. Zeochem AG, Home Page, http://www.zeochem.com/en/index.htm

  28. Corma A (1995) Chem Rev 95:540–559

    Article  Google Scholar 

  29. Varisli D, Dogu T, Dogu G (2008) Ind Eng Chem Res 47:4071–4076

    Article  CAS  Google Scholar 

  30. Naohara H, Yoshimoto T, Toshima N (2010) J Power Sources 195:1051–1053

    Article  CAS  Google Scholar 

  31. Dogu T, Aydin E, Boz N, Murtezaoglu K, Dogu G (2003) Int J Chem Reactor Eng 1:A6

    Google Scholar 

  32. Oktar N, Murtezaoglu K, Dogu T, Dogu G (1999) Can J Chem Eng 77:406–412

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Gazi University Research Fund Projects (06/2007-13, 06/2010-29, 06/2010-31, 06/2011-43 and 06/2012-17) and Scientific and Technical Research Council of Turkey Project (TUBITAK-108M329). N. Ozbay was awarded scholarship by Scientific and Technical Research Council of Turkey (TUBITAK-BIDEB: 2211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuray Oktar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozbay, N., Oktar, N., Dogu, G. et al. Activity Comparison of Different Solid Acid Catalysts in Etherification of Glycerol with tert-Butyl Alcohol in Flow and Batch Reactors. Top Catal 56, 1790–1803 (2013). https://doi.org/10.1007/s11244-013-0116-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0116-0

Keywords

Navigation