Skip to main content
Log in

Photocatalytic H2 Production from Ethanol–Water Mixtures Over Pt/TiO2 and Au/TiO2 Photocatalysts: A Comparative Study

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Pt/TiO2 (Pt loadings 0–4 wt%) and Au/TiO2 (Au loadings 0–4 wt%) photocatalysts were synthesized, characterized and tested for H2 production from ethanol–water mixtures (80 vol% ethanol, 20 vol% H2O) under UV excitation. Average metal nanoparticle sizes determined by TEM were 1–3 nm for Pt in the Pt/TiO2 photocatalysts and 5–7 nm for Au in the Au/TiO2 photocatalysts. Au/TiO2 showed an intense localized surface plasmon resonance feature at ~570 nm, typical for metallic Au nanoparticles of diameter ~5 nm supported on TiO2. X-ray photoelectron spectroscopy and X-ray diffraction analyses established that Pt and Au were present in metallic form on the TiO2 support. X-ray fluorescence revealed close accord between nominal and actual Pt and Au loadings. The Au/TiO2 and Pt/TiO2 photocatalysts both displayed very high activities for H2 production under UV irradiation, with the Au/TiO2 samples affording slightly superior rates of H2 production at most metal loadings. The 2 wt% Au/TiO2 and 1 wt% Pt/TiO2 photocatalysts showed the highest H2 production rates (32–34 mmol g−1 h−1). Photoluminescence studies confirmed that Pt and Au nanoparticles positively enhance the photocatalytic properties of P25 TiO2 for H2 production by acting as electron acceptors and thereby suppressing electron–hole pair recombination in TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chiarello GL, Selli E (2010) Recent Pat Eng 3:155–169

    Article  Google Scholar 

  2. Navarro RM, Peña MA, Fierro JL (2007) Chem Rev 10:3952–3991

    Article  Google Scholar 

  3. Waterhouse GIN, Idriss H (2009) In: Vayssieres L (ed) On solar hydrogen and nanotechnology. Wiley, Chichester

  4. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) Renew Sustain Energy Rev 3:401–425

    Article  Google Scholar 

  5. Matsuoka M, Kitano M, Takeuchi M, Tsujimaru K, Anpo M, Thomas JM (2007) Catal Today 1–2:51–61

    Article  Google Scholar 

  6. Shimura K, Yoshida H (2011) Energy Environ Sci 7:2467–2481

    Article  Google Scholar 

  7. Rajeshwar K (2007) J Appl Electrochem 7:765–787

    Article  Google Scholar 

  8. Linsebigler AL, Lu G, Yates JT (1995) Chem Rev 3:735–758

    Article  Google Scholar 

  9. Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C 1:1–21

    Article  CAS  Google Scholar 

  10. Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1995) J Photochem Photobiol A 2:177–189

    Article  Google Scholar 

  11. Nadeem MA, Murdoch M, Waterhouse GIN, Metson JB, Keane MA, Llorca J, Idriss H (2010) J Photochem Photobiol A 2–3:250–255

    Article  Google Scholar 

  12. Yu J, Hai Y, Jaroniec M (2011) J Colloid Interface Sci 1:223–228

    Article  Google Scholar 

  13. Cheng P, Yang Z, Wang H, Cheng W, Chen M, Shangguan W, Ding G (2012) Int J Hydrogen Energy 3:2224–2230

    Article  Google Scholar 

  14. Park HG, Holt JK (2010) Energy Environ Sci 8:1028–1036

    Article  Google Scholar 

  15. Murdoch M, Waterhouse GIN, Nadeem MA, Metson JB, Keane MA, Howe RF, Llorca J, Idriss H (2011) Nat Chem 6:489–492

    Google Scholar 

  16. Chiarello GL, Selli E, Forni L (2008) Appl Catal B 1–2:332–339

    Google Scholar 

  17. Subramanian V, Wolf EE, Kamat PV (2004) J Am Chem Soc 15:4943–4950

    Article  Google Scholar 

  18. Kamat PV (2008) J Phys Chem C 48:18737–18753

    Google Scholar 

  19. Waterhouse GIN, Murdoch M, Llorca J, Idriss H (2012) Int J Nanotechnol 1:113–120

    Article  Google Scholar 

  20. Bickley RI, Gonzalez-Carreno T, Lees JS, Palmisano L, Tilley RJD (1991) J Solid State Chem 1:178–190

    Article  Google Scholar 

  21. Datye AK, Riegel G, Bolton JR, Huang M, Prairie MR (1995) J Solid State Chem 1:236–239

    Article  Google Scholar 

  22. Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) J Catal 1:82–86

    Article  Google Scholar 

  23. Ohtani B, Prieto-Mahaney OO, Li D, Abe R (2010) J Photochem Photobiol A 2–3:179–182

    Article  Google Scholar 

  24. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) J Phys Chem B 19:4545–4549

    Article  Google Scholar 

  25. Haruta M (1997) Catal Surv Jpn 1:61–73

    Article  CAS  Google Scholar 

  26. Pichat P, Mozzanega M-N, Courbon H (1987) J Chem Soc Farad Trans 1(3):697–704

    Google Scholar 

  27. Lin CH, Lee CH, Chao JH, Kuo CY, Cheng YC, Huang WN, Chang HW, Huang YM, Shih MK (2004) Catal Lett 1:61–66

    Article  Google Scholar 

  28. Gallo A, Montini T, Marelli M, Minguzzi A, Gombac V, Psaro R, Fornasiero P, Dal Santo V (2012) ChemSusChem 9:1800–1811

    Article  Google Scholar 

  29. Zanella R, Giorgio S, Henry CR, Louis C (2002) J Phys Chem B 31:7634–7642

    Article  Google Scholar 

  30. Alonso F, Riente P, Rodríguez-Reinoso F, Ruiz-Martínez J, Sepúlveda-Escribano A, Yus M (2008) J Catal 1:113–118

    Article  Google Scholar 

  31. Huang B-S, Chang F-Y, Wey M-Y (2010) Int J Hydrogen Energy 15:7699–7705

    Article  Google Scholar 

  32. Fu X, Clark LA, Yang Q, Anderson MA (1996) Environ Sci Technol 2:647–653

    Article  Google Scholar 

  33. Kimura K, Naya S-i, Jin-nouchi Y, Tada H (2012) J Phys Chem C 12:7111–7117

    Article  Google Scholar 

  34. Kowalska E, Mahaney OOP, Abe R, Ohtani B (2010) Phys Chem Chem Phys 10:2344–2355

    Article  Google Scholar 

  35. Chen J-J, Wu JCS, Wu PC, Tsai DP (2010) J Phys Chem C 1:210–216

    Google Scholar 

  36. Tanaka A, Sakaguchi S, Hashimoto K, Kominami H (2012) ACS Catal 1:79–85

    Google Scholar 

  37. Rosseler O, Shankar MV, Du MK-L, Schmidlin L, Keller N, Keller V (2010) J Catal 1:179–190

    Article  Google Scholar 

  38. Li XZ, Li FB (2001) Environ Sci Technol 11:2381–2387

    Article  Google Scholar 

  39. Cárdenas-Lizana F, Gómez-Quero S, Idriss H, Keane MA (2009) J Catal 2:223–234

    Article  Google Scholar 

  40. Howard A, Clark DNS, Mitchell CEJ, Egdell RG, Dhanak VR (2002) Surf Sci 3:210–224

    Article  Google Scholar 

  41. Idriss H, Barteau MA (1992) J Phys Chem 96:3382–3388

    Article  CAS  Google Scholar 

  42. Jing L, Qu Y, Wang B, Li S, Jiang B, Yang L, Fu W, Fu H, Sun J (2006) Sol Energy Mater Sol Cells 90:1773–1787

    Article  CAS  Google Scholar 

  43. Vazquez LN Master in photonics Experimental setup fopr carrier lifetime measurement based on photoluminescence response. Escole Tecnica Superior, Universtat Politècnica de Catalunya (UPC)

  44. Lunawat P, Kumar R, Gupta N (2008) Catal Lett 3–4:226–233

    Article  Google Scholar 

  45. Serpone N, Lawless D, Khairutdinov R (1995) J Phys Chem 45:16646–16654

    Article  Google Scholar 

  46. Abazović ND, Čomor MI, Dramićanin MD, Jovanović DJ, Ahrenkiel SP, Nedeljković JM (2006) J Phys Chem B 50:25366–25370

    Article  Google Scholar 

  47. Daude N, Gout C, Jouanin C (1977) Phys Rev B 6:3229–3235

    Article  Google Scholar 

  48. Nakajima H, Mori T, Watanabe M (2004) J Appl Phys 1:925–927

    Article  Google Scholar 

  49. Nakajima H, Mori T (2006) Physica B 376–377:820–822

    Article  Google Scholar 

  50. Sakata T, Kawai T (1981) Chem Phys Lett 2:341–344

    Article  Google Scholar 

  51. Bowker M, Millard L, Greaves J, James D, Soares J (2004) Gold Bull 37:170–173

    Article  CAS  Google Scholar 

  52. Xu M, Gao Y, Moreno EM, Kunst M, Muhler M, Wang Y, Idriss H, Wöll C (2011) Phys Rev Lett 13:138302

    Article  Google Scholar 

  53. Connelly K, Wahab AK, Idriss H (2012) Mater Renew Sustain Energy 1:1–12

    Article  Google Scholar 

  54. Bowker M (2011) Green Chem 9:2235–2246

    Article  Google Scholar 

  55. Pichat P, Herrmann JM, Disdier J, Mozzanega MN, Courbon H (1984) Stud Surf Sci Catal 19:319–326

    Article  CAS  Google Scholar 

  56. Nardelli MB, Rapcewicz K, Bernholc J (1997) Appl Phys Lett 21:3135–3137

    Article  Google Scholar 

  57. Linic S, Christopher P, Ingram DB (2011) Nat Mater 12:911–921

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding support from the University of Auckland, the Australian Institute for Nuclear Science and Technology (AINSE) and the MacDiarmid Institute for Advanced Materials and Nanotechnology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Idriss or Geoffrey I. N. Waterhouse.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jovic, V., Al-Azri, Z.H.N., Chen, WT. et al. Photocatalytic H2 Production from Ethanol–Water Mixtures Over Pt/TiO2 and Au/TiO2 Photocatalysts: A Comparative Study. Top Catal 56, 1139–1151 (2013). https://doi.org/10.1007/s11244-013-0080-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0080-8

Keywords

Navigation